试题

题目:
如图1,四边形ABCD为正方形,点A在y轴上,点B在x轴上,且OA=4,OB=2,反比例函数y=
k
x
(k≠0)
在第一象限的图象经过正方形的顶点C.
(1)求点C的坐标和反比例函数的关系式;
(2)如图2,将正方形ABCD沿x轴向右平移
3
3
个单位长度时,点A恰好落在反比例函数的图象上.
(3)在(2)的情况下,连结AO并延长它,交反比例函数的图象于点Q,点P是x轴上的一个动点(不与点O、B重合),
①当点P的坐标为多少时,四边形ABQP是矩形?请说明理由.
②过点A作AF⊥x轴于点F,问:当点P的坐标为多少时,△PAF与△OAF相似?(直接写出答案)
青果学院
答案
3

青果学院解:(1)如图1所示,过点C作CE⊥x轴于点E,则∠AOB=∠BEC=90°,
∵四边形ABCD为正方形,
∴AB=BC,∠ABC=90°,
∴∠OBA+∠EBC=90°,
又∵∠OBA+∠OAB=90°,
∴∠OAB=∠EBC,
∴△AOB≌△BEC(AAS),
∴BE=OA=4,CE=OB=2,
∴OE=OB+BE=6,
∴点C的坐标为(6,2).
将C(6,2)代入y=
k
x
,得 2=
k
6
,解得 k=12,
∴反比例函数的关系式为y=
12
x


(2)∵A(0,4),
∴OA=4,
当y=4时,x=
12
4
=3,
∴将正方形ABCD沿x轴向右平移3个单位长度时,点A恰好落在反比例函数的图象上.
故答案为:3;

(3)①当点P的坐标为(-5,0)时,四边形ABQP是矩形.
理由如下:
∵由(2)知A(3,4),B(5,0),双曲线上各点关于原点对称,
∴点A与点Q关于原点对称,
∴Q(-3,-4),
∴AO=AQ=
32+42
=5,
又∵PO=OB=5,
∴四边形ABQP是平行四边形,
又∵PB=AQ=10,
∴四边形ABQP是矩形;
②∵A(3,4),F(3,0),
∴OA=5,
设P(x,0),
当△AOF∽△PAF时,
AF
PF
=
OF
AF
,即
4
|3-x|
=
3
4
,解得x=-
7
3
或x=
25
3

∴P(-
7
3
,0)或(
25
3
,0);
当△AOF∽△APF时,
∵AF=AF,
∴OF=PF,
∴P(6,0),
故点P的坐标为(-
7
3
,0)或(
25
3
,0)或(6,0).
考点梳理
反比例函数综合题.
(1)过点C作CE⊥x轴于点E,由全等三角形的判定定理可得出△AOB≌△BEC,再由全等三角形的性质可求出OE的长,进而得出C点坐标.把点坐标代入反比例函数y=
k
x
即可得出其解析式;
(2)根据A(0,4)可知OA=4,再把y=4代入反比例函数的解析式求出x的值即可;
(3)①先根据点A与点Q关于原点对称,再根据勾股定理求出AQ的长,由矩形的对角线相等即可得出P点坐标;
②设P(x,0),再根据△AOF∽△PAF与△AOF∽△APF两种情况进行分类讨论.
本题考查的是反比例函数综合题,熟知反比例函数图象上点的坐标特点、正方形的性质、相似三角形的判定与性质等相关知识是解答此题的关键.
找相似题