试题

题目:
青果学院如图,双曲线y=
k
x
与直线y=mx相交于A、B两点,M为此双曲线在第一象限内的任一点(M在A点左侧),设直线AM、BM分别与y轴相交于P、Q两点,且p=
MB
MQ
q=
MA
MP
,则p-q的值为
2
2

答案
2

解:∵双曲线y=
k
x
与直线y=mx相交于A、B两点,青果学院
∴设A(m,n)则B(-m,-n),
过A作AN⊥y轴于N,过M作MH⊥y轴于H,过B作BG⊥y轴于G,
则BG=AN=m,
∴MH∥AN∥BG,
BQ
MQ
=
BG
MH

∴p=
MB
MQ
=
MQ+BQ
MQ
=1+
BQ
MQ
=1+
BG
MH

AP
PM
=
AN
MH

AM+MP
MP
=
AN
MH

即1+
AM
MP
=
AN
MH

∴q=
AM
MP
=
AN
MH
-1,
∵BG=AN,
∴p-q=(1+
BG
MH
)-(
AN
MH
-1)=2.
故答案为:2.
考点梳理
反比例函数综合题;平行线分线段成比例.
设A(m,n)则B(-m,-n),过A作AN⊥y轴于N,过M作MH⊥y轴于H,过B作BG⊥y轴于G,根据平行线分线段成比例定理得出
BQ
MQ
=
BG
MH
AP
PM
=
AN
MH
,求出p=1+
BG
MH
,q=
AN
MH
-1,代入p-q求出即可.
本题考查了平行线分线段成比例定理和一次函数与反比例函数的应用,关键是根据平行线分线段成比例定理得出比例式,题目比较好,但有一定的难度.
计算题.
找相似题