试题
题目:
如图,双曲线
y=
k
x
与直线y=mx相交于A、B两点,M为此双曲线在第一象限内的任一点(M在A点左侧),设直线AM、BM分别与y轴相交于P、Q两点,且
p=
MB
MQ
,
q=
MA
MP
,则p-q的值为
2
2
.
答案
2
解:∵双曲线
y=
k
x
与直线y=mx相交于A、B两点,
∴设A(m,n)则B(-m,-n),
过A作AN⊥y轴于N,过M作MH⊥y轴于H,过B作BG⊥y轴于G,
则BG=AN=m,
∴MH∥AN∥BG,
∴
BQ
MQ
=
BG
MH
,
∴p=
MB
MQ
=
MQ+BQ
MQ
=1+
BQ
MQ
=1+
BG
MH
,
∵
AP
PM
=
AN
MH
,
∴
AM+MP
MP
=
AN
MH
,
即1+
AM
MP
=
AN
MH
,
∴q=
AM
MP
=
AN
MH
-1,
∵BG=AN,
∴p-q=(1+
BG
MH
)-(
AN
MH
-1)=2.
故答案为:2.
考点梳理
考点
分析
点评
专题
反比例函数综合题;平行线分线段成比例.
设A(m,n)则B(-m,-n),过A作AN⊥y轴于N,过M作MH⊥y轴于H,过B作BG⊥y轴于G,根据平行线分线段成比例定理得出
BQ
MQ
=
BG
MH
,
AP
PM
=
AN
MH
,求出p=1+
BG
MH
,q=
AN
MH
-1,代入p-q求出即可.
本题考查了平行线分线段成比例定理和一次函数与反比例函数的应用,关键是根据平行线分线段成比例定理得出比例式,题目比较好,但有一定的难度.
计算题.
找相似题
(2013·乐山)如图,已知第一象限内的点A在反比例函数y=
2
x
的图象上,第二象限内的点B在反比例函数y=
k
x
的图象上,且OA⊥OB,cosA=
3
3
,则k的值为( )
(2013·荆州)如图,在平面直角坐标系中,直线y=-3x+3与x轴、y轴分别交于A、B两点,以AB为边在第一象限作正方形ABCD,点D在双曲线
y=
k
x
(k≠0)上.将正方形沿x轴负方向平移a个单位长度后,点C恰好落在该双曲线上,则a的值是( )
(2013·济南)如图,平行四边形OABC的顶点B,C在第一象限,点A的坐标为(3,0),点D为边AB的中点,反比例函数y=
k
x
(x>0)的图象经过C,D两点,若∠COA=α,则k的值等于( )
(2013·黑龙江)如图,Rt△ABC的顶点A在双曲线y=
k
x
的图象上,直角边BC在x轴上,∠ABC=90°,∠ACB=30°,OC=4,连接OA,∠AOB=60°,则k的值是( )
(2012·随州)如图,直线l与反比例函数y=
2
x
的图象在第一象限内交于A,B两点,交x轴于点C,若AB:BC=(m-1):1(m>1),则△OAB的面积(用m表示)为( )