试题
题目:
反比例函数y=-
6
x
与直线y=-x+2的图象交于A、B两点,点A、B分别在第四、二象限,
求:(1)A、B两点的坐标;
(2)△ABO的面积.
答案
解:(1)依题意得:
y=-
6
x
y=-x+2
∴
x
1
=1+
7
y
1
=1-
7
,
x
2
=1-
7
y
2
=1+
7
∴A(1+
7
,1-
7
)B(1-
7
,1+
7
);
(2)∵直线y=-x+2,
∴当x=0时,y=2,
当y=0时,x=2,
∴C(2,0),D(0,2),
∴OC=OD=2,
∴S
△ABO
=S
△BOC
+S
△AOC
=2
7
.
解:(1)依题意得:
y=-
6
x
y=-x+2
∴
x
1
=1+
7
y
1
=1-
7
,
x
2
=1-
7
y
2
=1+
7
∴A(1+
7
,1-
7
)B(1-
7
,1+
7
);
(2)∵直线y=-x+2,
∴当x=0时,y=2,
当y=0时,x=2,
∴C(2,0),D(0,2),
∴OC=OD=2,
∴S
△ABO
=S
△BOC
+S
△AOC
=2
7
.
考点梳理
考点
分析
点评
专题
反比例函数综合题.
(1)解由它们的解析式组成的方程组就可以求出A、B两点的坐标;
(2)利用面积的分割法去求△ABO的面积.
此题主要考查了利用解方程组来确定两个函数图象的交点坐标,也考查利用坐标表示线段长度,从而求出三角形的面积.
方程思想.
找相似题
(2013·乐山)如图,已知第一象限内的点A在反比例函数y=
2
x
的图象上,第二象限内的点B在反比例函数y=
k
x
的图象上,且OA⊥OB,cosA=
3
3
,则k的值为( )
(2013·荆州)如图,在平面直角坐标系中,直线y=-3x+3与x轴、y轴分别交于A、B两点,以AB为边在第一象限作正方形ABCD,点D在双曲线
y=
k
x
(k≠0)上.将正方形沿x轴负方向平移a个单位长度后,点C恰好落在该双曲线上,则a的值是( )
(2013·济南)如图,平行四边形OABC的顶点B,C在第一象限,点A的坐标为(3,0),点D为边AB的中点,反比例函数y=
k
x
(x>0)的图象经过C,D两点,若∠COA=α,则k的值等于( )
(2013·黑龙江)如图,Rt△ABC的顶点A在双曲线y=
k
x
的图象上,直角边BC在x轴上,∠ABC=90°,∠ACB=30°,OC=4,连接OA,∠AOB=60°,则k的值是( )
(2012·随州)如图,直线l与反比例函数y=
2
x
的图象在第一象限内交于A,B两点,交x轴于点C,若AB:BC=(m-1):1(m>1),则△OAB的面积(用m表示)为( )