反比例函数综合题.
根据旋转的性质得到∠P=∠POM=∠OGF=90°,再根据等角的余角相等可得∠PNO=∠GOA,然后根据相似三角形的判定方法即可得到△OGA∽△NPO;由E点坐标为(4,0),G点坐标为(0,2)得到OE=4,OG=2,则OP=OG=2,PN=GF=OE=4,由于△OGA∽△NPO,则OG:NP=GA:OP,即2:4=GA:2,可求得GA=1,可得到A点坐标为(1,2),然后利用待定系数法即可得到过点A的反比例函数解析式,再利用B点的横坐标为4和B点在y=
得到B点坐标即可.
本题考查了反比例函数综合题:点在反比例函数图象上,则点的横纵坐标满足函数的解析式;运用待定系数法求函数的解析式;掌握旋转的性质和矩形的性质;熟练掌握相似三角形的判定与性质是解题关键.
压轴题.