反比例函数综合题.
分别过C、D作x轴的垂线,垂足为F、G,过C点作CH⊥DG,垂足为H,根据CD∥AB,CD=AB可证△CDH≌△ABO,则CH=AO=1,DH=OB=2,由此设C(m+1,n),D(m,n+2),C、D两点在双曲线y=
上,则(m+1)n=m(n+2),解得n=2m,设直线AD解析式为y=ax+b,将A、D两点坐标代入求解析式,确定E点坐标,求S
△ABE,根据S
四边形BCDE=5S
△ABE,列方程求m、n的值,根据k=(m+1)n求解.
本题考查了反比例函数的综合运用,解答此题的关键是通过作辅助线,将图形分割,寻找全等三角形,利用边的关系设双曲线上点的坐标,根据面积关系,列方程求解.
压轴题;探究型.