反比例函数综合题.
①先把反比例函数、一次函数解析式联合组成方程组,解可求A、B坐标,根据y=-2x+5可求C、D的坐标,而AE⊥y轴,BF⊥x轴,结合A、B、C、D的坐标,可知AE=1,DE=OD-OE=5-3=2,在Rt△ADE中利用勾股定理可求AD=
,同理可求BC=
,于是AD=BC,①正确;
②根据A、B、C、D的坐标,易求OF:OE=1:2,OC:OD=1:2,即OF:OE=OC:OD,斜率相等的两直线平行,那么EF∥AB,故②正确;
③由于AE=CF=1,且AE∥CF,根据一组对边相等且平行的四边形是平行四边形,可知四边形AEFC是平行四边形,故③正确;
④根据面积公式可分别求S
△AOD,S
△BOC,可知两个面积相等,故④正确.
本题考查了反比例函数、一次函数的性质、三角形面积公式、勾股定理、平行四边形的判定,解题的关键是熟练点与函数的关系,能根据函数解析式求出所需要的点.
压轴题;数形结合.