试题
题目:
(2013·锡山区一模)如图,已知:如图,在直角坐标系中,有菱形OABC,A点的坐标为(10,0),对角线OB、AC相交于D点,双曲线y=
k
x
(x>0)经过D点,交BC的延长线于E点,且OB·AC=160,有下列四个结论:
①双曲线的解析式为y=
40
x
(x>0);②E点的坐标是(5,8);③sin∠COA=
4
5
;④AC+OB=12
5
.其中正确的结论有( )
A.1个
B.2个
C.3个
D.4个
答案
B
解:过点C作CF⊥x轴于点F,
∵OB·AC=160,A点的坐标为(10,0),
∴OA·CF=
1
2
OB·AC=
1
2
×160=80,菱形OABC的边长为10,
∴CF=
80
OA
=
80
10
=8,
在Rt△OCF中,
∵OC=10,CF=8,
∴OF=
O
C
2
-C
F
2
=
1
0
2
-
8
2
=6,
∴C(6,8),
∵点D时线段AC的中点,
∴D点坐标为(
10+6
2
,
8
2
),即(8,4),
∵双曲线y=
k
x
(x>0)经过D点,
∴4=
k
8
,即k=32,
∴双曲线的解析式为:y=
32
x
(x>0),故①错误;
∵CF=8,
∴直线CB的解析式为y=8,
∴
y=
32
x
y=8
,解得x=4,y=8,
∴E点坐标为(4,8),故②错误;
∵CF=8,OC=10,
∴sin∠COA=
CF
OC
=
8
10
=
4
5
,故③正确;
∵A(10,0),C(6,8),
∴AC=
(10-6
)
2
+(0-8
)
2
=4
5
,
∵OB·AC=160,
∴OB=
160
AC
=
160
4
5
=8
5
,
∴AC+OB=4
5
+8
5
=12
5
,故④正确.
故选B.
考点梳理
考点
分析
点评
反比例函数综合题.
过点C作CF⊥x轴于点F,由OB·AC=160可求出菱形的面积,由A点的坐标为(10,0)可求出CF的长,由勾股定理可求出OF的长,故可得出C点坐标,对角线OB、AC相交于D点可求出D点坐标,用待定系数法可求出双曲线y=
k
x
(x>0)的解析式,由反比例函数的解析式与直线BC的解析式联立即可求出E点坐标;由sin∠COA=
CF
OC
可求出∠COA的正弦值;根据A、C两点的坐标可求出AC的长,由OB·AC=160即可求出OB的长.
本题考查的是反比例函数综合题,涉及到菱形的性质及反比例函数的性质、锐角三角函数的定义等相关知识,难度适中.
找相似题
(2013·乐山)如图,已知第一象限内的点A在反比例函数y=
2
x
的图象上,第二象限内的点B在反比例函数y=
k
x
的图象上,且OA⊥OB,cosA=
3
3
,则k的值为( )
(2013·荆州)如图,在平面直角坐标系中,直线y=-3x+3与x轴、y轴分别交于A、B两点,以AB为边在第一象限作正方形ABCD,点D在双曲线
y=
k
x
(k≠0)上.将正方形沿x轴负方向平移a个单位长度后,点C恰好落在该双曲线上,则a的值是( )
(2013·济南)如图,平行四边形OABC的顶点B,C在第一象限,点A的坐标为(3,0),点D为边AB的中点,反比例函数y=
k
x
(x>0)的图象经过C,D两点,若∠COA=α,则k的值等于( )
(2013·黑龙江)如图,Rt△ABC的顶点A在双曲线y=
k
x
的图象上,直角边BC在x轴上,∠ABC=90°,∠ACB=30°,OC=4,连接OA,∠AOB=60°,则k的值是( )
(2012·随州)如图,直线l与反比例函数y=
2
x
的图象在第一象限内交于A,B两点,交x轴于点C,若AB:BC=(m-1):1(m>1),则△OAB的面积(用m表示)为( )