试题
题目:
已知一次函数的图象与双曲线
y=-
2
x
交于两点的坐标分别为(-1,m)、(n,-1);
(1)求该一次函数的解析式;
(2)描出函数草图,根据图象写出使一次函数的值大于反比例函数的值的x的取值范围.
答案
解:(1)∵坐标为(-1,m)和(n,-1)的两点在双曲线
y=-
2
x
上
∴
m=-
2
-1
,-1=-
2
n
(1分)
∴m=2,n=2(2分)
设一次函数的解析式为:y=kx+b(3分)
代入坐标(-1,2)和(2,-1)得:
2=-k+b
-1=2k+b
解之得:
k=-1
b=1
(5分)
∴一次函数的解析式为:y=-x+1(6分)
(2)画出函数草图(8分)
根据图象得:当x<-1或0<x<2时,
一次函数的值大于反比例函数.(10分)
解:(1)∵坐标为(-1,m)和(n,-1)的两点在双曲线
y=-
2
x
上
∴
m=-
2
-1
,-1=-
2
n
(1分)
∴m=2,n=2(2分)
设一次函数的解析式为:y=kx+b(3分)
代入坐标(-1,2)和(2,-1)得:
2=-k+b
-1=2k+b
解之得:
k=-1
b=1
(5分)
∴一次函数的解析式为:y=-x+1(6分)
(2)画出函数草图(8分)
根据图象得:当x<-1或0<x<2时,
一次函数的值大于反比例函数.(10分)
考点梳理
考点
分析
点评
专题
反比例函数的应用;待定系数法求一次函数解析式;反比例函数的图象;反比例函数的性质.
(1)坐标为(-1,m)和(n,-1)的两点在双曲线
y=-
2
x
上,联立并解可得m、n的值;设一次函数的解析式为:y=kx+b,代入数据,解可得一次函数的解析式;
(2)画出函数草图,根据函数的图象,可得答案.
本题考查反比例函数与一次函数的图象间的关系,注意结合题意,结合图象选用合适的方法解题.
作图题;待定系数法.
找相似题
(2013·泉州)为了更好保护水资源,造福人类,某工厂计划建一个容积V(m
3
)一定的污水处理池,池的底面积S(m
2
)与其深度h(m)满足关系式:V=Sh(V≠0),则S关于h的函数图象大致是( )
(2013·呼伦贝尔)若一个圆锥的侧面积是10,圆锥母线l与底面半径r之间的函数关系图象大致是( )
(2013·大庆)已知梯形的面积一定,它的高为h,中位线的长为x,则h与x的函数关系大致是( )
(2012·湛江)已知长方形的面积为20cm
2
,设该长方形一边长为ycm,另一边的长为xcm,则y与x之间的函数图象大致是( )
(2012·南充)矩形的长为x,宽为y,面积为9,则y与x之间的函数关系式用图象表示大致为( )