试题
题目:
为预防甲型H1N1流感,某校对教室进行过氧乙酸药物消毒,已知药物喷洒阶段,室内每立
方米空气中的含药量y(mg)与喷洒时间x(分钟)成正比例,喷洒完后,y与x成反比例,现知喷洒用了9分钟,此时的含药量每立方米6mg.
(1)分别写出喷洒阶段和喷洒后y与x之间的函数关系式;
(2)按照相关要求,每立方米空气含药量不超过1.8mg时,对人体不产生毒副作用,那么从消毒开始,经多少时间后学生才可以回教室?
答案
解:(1)喷洒阶段关系式为y=kx,将A(9,6)代入6=k·9
∴k=
2
3
,即y=
2
3
x
喷洒结束后关系为y=
k
1
x
,将A(9,6)代入6=
k
1
9
,
∴k
1
=54,即y=
54
x
(2)当y=1.8时,x=30,
∴从消毒开始,至少经过30分钟后才能进教室.
解:(1)喷洒阶段关系式为y=kx,将A(9,6)代入6=k·9
∴k=
2
3
,即y=
2
3
x
喷洒结束后关系为y=
k
1
x
,将A(9,6)代入6=
k
1
9
,
∴k
1
=54,即y=
54
x
(2)当y=1.8时,x=30,
∴从消毒开始,至少经过30分钟后才能进教室.
考点梳理
考点
分析
点评
反比例函数的应用;一次函数的应用.
(1)根据函数图象知道两段函数分别是正比例函数和一次函数,设出解析式后用待定系数法求解即可;
(2)令y=1.8求得相应的x的值即可得到答案.
主要考查了函数的应用.解题的关键是根据实际意义列出函数关系式,从实际意义中找到对应的变量的值,利用待定系数法求出函数解析式,再根据自变量的值求算对应的函数值.
找相似题
(2013·铜仁地区)已知矩形的面积为8,则它的长y与宽x之间的函数关系用图象大致可以表示为( )
(2013·青岛)已知矩形的面积为36cm
2
,相邻的两条边长分别为xcm和ycm,则y与x之间的函数图象大致是( )
(2012·南充)矩形的长为x,宽为y,面积为9,则y与x之间的函数关系式用图象表示大致为( )
(2011·咸宁)直角三角形两直角边的长分别为x,y,它的面积为3,则y与x之间的函数关系用图象表示大致是( )
(2011·黑龙江)已知:力F所作的功是15焦(功=力×物体在力的方向上通过的距离),则力F与物体在力的方向上通过的距离S之间的函数关系图象大致是下图中的( )