试题

题目:
(2013·济宁)阅读材料:
若a,b都是非负实数,则a+b≥2
ab
.当且仅当a=b时,“=”成立.
证明:∵(
a
-
b
2≥0,∴a-2
ab
+b≥0.
∴a+b≥2
ab
.当且仅当a=b时,“=”成立.
举例应用:
已知x>0,求函数y=2x+
2
x
的最小值.
解:y=2x+
2
x
2
2x·
2
x
=4.当且仅当2x=
2
x
,即x=1时,“=”成立.
当x=1时,函数取得最小值,y最小=4.
问题解决:
汽车的经济时速是指汽车最省油的行驶速度.某种汽车在每小时70~110公里之间行驶时(含70公里和110公里),每公里耗油(
1
18
+
450
x2
)升.若该汽车以每小时x公里的速度匀速行驶,1小时的耗油量为y升.
(1)求y关于x的函数关系式(写出自变量x的取值范围);
(2)求该汽车的经济时速及经济时速的百公里耗油量(结果保留小数点后一位).
答案
解:(1)∵汽车在每小时70~110公里之间行驶时(含70公里和110公里),每公里耗油(
1
18
+
450
x2
)升.
∴y=x×(
1
18
+
450
x2
)=
x
18
+
450
x
(70≤x≤110);
(2)根据材料得:当
x
18
=
450
x
时有最小值,
解得:x=90
∴该汽车的经济时速为90千米/小时;
当x=90时百公里耗油量为100×(
1
18
+
450
8100
)≈11.1升.
解:(1)∵汽车在每小时70~110公里之间行驶时(含70公里和110公里),每公里耗油(
1
18
+
450
x2
)升.
∴y=x×(
1
18
+
450
x2
)=
x
18
+
450
x
(70≤x≤110);
(2)根据材料得:当
x
18
=
450
x
时有最小值,
解得:x=90
∴该汽车的经济时速为90千米/小时;
当x=90时百公里耗油量为100×(
1
18
+
450
8100
)≈11.1升.
考点梳理
反比例函数的应用;一元一次不等式的应用.
(1)根据耗油总量=每公里的耗油量×行驶的速度列出函数关系式即可;
(2)经济时速就是耗油量最小的形式速度.
本题考查了反比例函数的应用,解题的关键是读懂题目提供的材料.
找相似题