试题
题目:
如图,AB∥GF,则∠ABC+∠C+∠D+∠E+∠EFG=
720°
720°
.若∠ABH=30°,∠MFG=28°,则∠H+∠L+∠M=
418°
418°
.
答案
720°
418°
解:连接BF,
∠ABC+∠C+∠D+∠E+∠EFG=∠ABF+∠BFG+五边形BFEDC的内角和=180°+540°=720°;
∠H+∠L+∠M=五边形BHLMF的内角和+(∠ABF+∠BFG)-(∠ABH+∠MFG)=540°-[180°-(30°+28°)]=418°.
故答案为:720°,418°.
考点梳理
考点
分析
点评
平行线的性质.
连接BF,将∠ABC+∠C+∠D+∠E+∠EFG转化为∠ABF+∠BFG+五边形BFEDC的内角和,将∠H+∠L+∠M转化为五边形BHLMF的内角和-[(∠ABF+∠BFG)-(∠ABH+∠MFG)],结合多边形的内角和定理及平行线的性质求解即可.
本题考查了平行线的性质及多边形的内角和,注意掌握平行线的性质及一个n变形的内角和为:180(n-2).
找相似题
(2013·台湾)附图中直线L、N分别截过∠A的两边,且L∥N.根据图中标示的角,判断下列各角的度数关系,何者正确?( )
(2013·三明)如图,直线a∥b,三角板的直角顶点在直线a上,已知∠1=25°,则∠2的度数是( )
(2013·黔东南州)如图,已知a∥b,∠1=40°,则∠2=( )
(2013·平凉)如图,把一块含有45°的直角三角形的两个顶点放在直尺的对边上.如果∠1=20°,那么∠2的度数是( )
(2013·晋江市)如图,已知直线a∥b,直线c与a、b分别交点于A、B,∠1=50°,则∠2=( )