试题
题目:
已知:如图,AD⊥BC,EF⊥BC垂足分别是D、F,∠E=∠AOE.
求证:AD平分∠BAC.
答案
解:∵AD⊥BC,EF⊥BC,
∴AD∥EF;
∴∠CAD=∠E,∠EOA=∠BAD,
∵∠E=∠AOE,
∴∠BAD=∠CAD,
即AD平分∠BAC.
解:∵AD⊥BC,EF⊥BC,
∴AD∥EF;
∴∠CAD=∠E,∠EOA=∠BAD,
∵∠E=∠AOE,
∴∠BAD=∠CAD,
即AD平分∠BAC.
考点梳理
考点
分析
点评
专题
平行线的性质;角平分线的定义;垂线.
先根据垂直的定义得到AD∥EF,利用同位角相等得到∠CAD=∠E,内错角相等得到∠EOA=∠BAD,根据等量代换即可求证AD平分∠BAC.
主要考查了角平分线的判定.一般是通过证明它所分得的两个角相等,同时考查了平行线的性质和垂线的定义.
证明题.
找相似题
(2013·台湾)附图中直线L、N分别截过∠A的两边,且L∥N.根据图中标示的角,判断下列各角的度数关系,何者正确?( )
(2013·三明)如图,直线a∥b,三角板的直角顶点在直线a上,已知∠1=25°,则∠2的度数是( )
(2013·黔东南州)如图,已知a∥b,∠1=40°,则∠2=( )
(2013·平凉)如图,把一块含有45°的直角三角形的两个顶点放在直尺的对边上.如果∠1=20°,那么∠2的度数是( )
(2013·晋江市)如图,已知直线a∥b,直线c与a、b分别交点于A、B,∠1=50°,则∠2=( )