试题
题目:
如图所示,已知CD平分∠ACB,DE∥BC,∠AED=5O°,求∠EDC的度数.
答案
解:∵DE∥BC,∠AED=50°,
∴∠ACB=∠AED=50°,
∵CD平分∠ACB,
∴∠BCD=
1
2
∠ACB=25°,
∴∠EDC=∠BCD=25°.
解:∵DE∥BC,∠AED=50°,
∴∠ACB=∠AED=50°,
∵CD平分∠ACB,
∴∠BCD=
1
2
∠ACB=25°,
∴∠EDC=∠BCD=25°.
考点梳理
考点
分析
点评
平行线的性质.
根据平行线的性质,可得∠ACB=∠AED=50°,然后根据角平分线的性质,易求得∠EDC的度数.
本题考查了平行线的性质,解答本题的关键是掌握:两直线平行,同位角相等;两直线平行,内错角相等.
找相似题
(2013·台湾)附图中直线L、N分别截过∠A的两边,且L∥N.根据图中标示的角,判断下列各角的度数关系,何者正确?( )
(2013·三明)如图,直线a∥b,三角板的直角顶点在直线a上,已知∠1=25°,则∠2的度数是( )
(2013·黔东南州)如图,已知a∥b,∠1=40°,则∠2=( )
(2013·平凉)如图,把一块含有45°的直角三角形的两个顶点放在直尺的对边上.如果∠1=20°,那么∠2的度数是( )
(2013·晋江市)如图,已知直线a∥b,直线c与a、b分别交点于A、B,∠1=50°,则∠2=( )