试题
题目:
(2009·东城区一模)如图,AB、CD是水平放置的轮盘(俯视图)上两条互相垂直的直径,一个小钢球在轮盘上自由滚动,该小钢球最终停在阴影区域的概率为
1
4
1
4
.
答案
1
4
解:因为AB、CD是水平放置的轮盘(俯视图)上两条互相垂直的直径,故它们把轮盘4等分,每一块阴影的面积在这一圈中都占
1
4
,
∴该小钢球最终停在阴影区域的概率为
1
4
.
考点梳理
考点
分析
点评
几何概率.
首先确定阴影的面积在整个轮盘中占的比例,根据这个比例即可求出小钢球最终停在阴影区域的概率.
本题将概率的求解设置于平放置的轮盘的游戏中,考查学生对简单几何概型的掌握情况,既避免了单纯依靠公式机械计算的做法,又体现了数学知识在现实生活、甚至娱乐中的运用,体现了数学学科的基础性.用到的知识点为:概率=相应的面积与总面积之比.
找相似题
(2013·咸宁)如图,正方形ABCD是一块绿化带,其中阴影部分EOFB,GHMN都是正方形的花圃.已知自由飞翔的小鸟,将随机落在这块绿化带上,则小鸟在花圃上的概率为( )
(2013·恩施州)如图所示,在平行四边形纸片上作随机扎针实验,针头扎在阴影区域内的概率为( )
(2011·茂名)如图,正方形ABCD内接于⊙O,⊙O的直径为
2
分米,若在这个圆面上随意抛一粒豆子,则豆子落在正方形ABCD内的概率是( )
(2011·锦州)如果小强将飞镖随意投中如图所示的正方形木板,那么飞镖落在阴影部分的概率为( )
(2007·临沂)小明随机地在如图所示的正三角形及其内部区域投针,则针扎到其内切圆(阴影)区域的概率为( )