试题
题目:
(2011·上饶县模拟)已知下列命题:①同位角相等;②若ac<0,则方程cx
2
+bx+a=0有两个不等实数根;③对角线相等且互相垂直的四边形是正方形;④抛物线y=x
2
-2x与坐标轴有3个不同交点;⑤边长相等的多边形内角都相等.从中任选一个命题是真命题的概率为( )
A.
1
5
B.
2
5
C.
3
5
D.
4
5
答案
A
解:①错误,两直线平行,同位角相等;
②∵b
2
>0,ac<0,
∴△=b
2
-4ac>0,
∴方程cx
2
+bx+a=O有两个不等实数根正确;
③错误,例如等腰梯形,
④错误,抛物线y=x
2
-2x与坐标轴有2个不同交点;
⑤错误,菱形的边长相等,但内角不一定相等,
∵分析5个命题,可知有1个是真命题,
故从中任选一个命题是真命题的概率为
1
5
.
故选A.
考点梳理
考点
分析
点评
专题
概率公式;根的判别式;抛物线与x轴的交点;同位角、内错角、同旁内角;多边形内角与外角;正方形的判定.
先逐一分析各命题的真假,再根据概率公式解答即可.
本题主要考查了概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=
m
n
,难度适中.
应用题.
找相似题
(2013·梧州)小李是9人队伍中的一员,他们随机排成一列队伍,从1开始按顺序报数,小李报到偶数的概率是( )
(2013·绍兴)一个不透明的袋子中有3个白球、2个黄球和1个红球,这些球除颜色可以不同外其他完全相同,则从袋子中随机摸出一个球是黄球的概率为( )
(2013·宁波)在一个不透明的布袋中装有3个白球和5个红球,它们除了颜色不同外,其余均相同.从中随机摸出一个球,摸到红球的概率是( )
(2012·枣庄)在一个不透明的盒子中装有8个白球,若干个黄球,它们除颜色不同外,其余均相同,若从中随机摸出一个球为白球的概率是
2
3
,则黄球的个数为( )
(2012·泰安)从下列四张卡片中任取一张,卡片上的图形是中心对称图形的概率是( )