试题
题目:
如图,在△ABC中,∠C=90°,E是AB的中点,且DE⊥AB于点E,∠CAD:∠EAD=1:2,则∠B与∠BAC的度数为( )
A.30°,60°
B.32°,58°
C.36°,54°
D.20°,70°
答案
C
解:设∠CAD=x,则∠EAD=2x,
∵E是AB的中点,且DE⊥AB于点E,
∴ED是AB的中垂线,
∴AD=AB,
∴∠DAB=∠DBA,
∴x+2x+2x=90°,
解得x=18°,
∴∠B=2x=36°,∠CAB=90°-36°=54°.
故选C.
考点梳理
考点
分析
点评
专题
线段垂直平分线的性质;直角三角形的性质.
先设∠CAD=x,则∠EAD=2x,由于E是AB的中点,且DE⊥AB于点E,可知ED是AB的中垂线,再由其性质可得AD=AB,进而可知∠DAB=∠DBA,从而易得x+2x+2x=90°,解即可求x,进而可求∠B、∠CAB.
本题考查了线段垂直平分线的性质、直角三角形的性质,解题的关键是得出ED是AB的中垂线.
方程思想.
找相似题
(2012·漳州)将一副直角三角板,按如图所示叠放在一起,则图中∠α的度数是( )
(2012·临沂)如图,AB∥CD,DB⊥BC,∠1=40°,则∠2的度数是( )
(2012·崇左)如图所示,直线a∥b,△ABC是直角三角形,∠A=90°,∠ABF=25°,则∠ACE等于( )
(2005·日照)一位园艺设计师计划在一块形状为直角三角形且有一个内角为60°的绿化带上种植四种不同的花卉,要求种植的四种花卉分别组成面积相等,形状完
全相同的几何图形图案.某同学为此提供了如图所示的五种设计方案.其中可以满足园艺设计师要求的有( )
(2005·安徽)用两个完全相同的直角三角板,不能拼成下列图形的是( )