试题
题目:
(2013·新民市一模)如图,AB∥DF,AC⊥BC于C,BC与DF交于点E,若∠A=20°,则∠CEF等于( )
A.110°
B.100°
C.80°
D.70°
答案
A
解:∵AC⊥BC于C,
∴△ABC是直角三角形,
∴∠ABC=180°-∠A-∠C=180°-20°-90°=70°,
∴∠ABC=∠1=70°,
∵AB∥DF,
∴∠1+∠CEF=180°,
即∠CEF=180°-∠1=180°-70°=110°.
故选A.
考点梳理
考点
分析
点评
专题
直角三角形的性质;平行线的性质.
如图,由AC⊥BC于C得到△ABC是直角三角形,然后可以求出∠ABC=180°-∠A-∠C=180°-20°-90°=70°,而∠ABC=∠1=70°,由于AB∥DF可以推出∠1+∠CEF=180°,由此可以求出∠CEF.
本题比较简单,考查的是平行线的性质及直角三角形的性质.
计算题.
找相似题
(2012·漳州)将一副直角三角板,按如图所示叠放在一起,则图中∠α的度数是( )
(2012·临沂)如图,AB∥CD,DB⊥BC,∠1=40°,则∠2的度数是( )
(2012·崇左)如图所示,直线a∥b,△ABC是直角三角形,∠A=90°,∠ABF=25°,则∠ACE等于( )
(2005·日照)一位园艺设计师计划在一块形状为直角三角形且有一个内角为60°的绿化带上种植四种不同的花卉,要求种植的四种花卉分别组成面积相等,形状完
全相同的几何图形图案.某同学为此提供了如图所示的五种设计方案.其中可以满足园艺设计师要求的有( )
(2005·安徽)用两个完全相同的直角三角板,不能拼成下列图形的是( )