试题
题目:
设关于x的一元二次方程x
2
+2ax+b
2
=0,若a是从0,1,2,3四个数中任取的一个数,b是从0,1,2三个数中任取的一个数,则上述方程有实根的概率为
3
4
3
4
.
答案
3
4
解:先从0,1,2,3四个数中任取的一个数为a,再从0,1,2三个数中任取的一个数为b,共有4×3=12种选法.
其中能使关于x的一元二次方程x
2
+2ax+b
2
=0有实数根的a、b必须满足△=4a
2
-4b
2
≥0,即|a|≥|b|,
共有以下9种选法:0,0;1,0;1,1;2,0;2,1;2,2;3,0;3,1;3,2.
因此所求的概率P=
9
12
=
3
4
.
故答案为
3
4
.
考点梳理
考点
分析
点评
概率公式;根的判别式.
先求出基本事件的总数,利用一元二次方程有实数根的充要条件即可得出要求事件包括基本事件的总数,再利用古典概型的计算公式即可得出答案.
本题考查了概率公式与一元二次方程的判别式,熟练掌握一元二次方程有实数根的充要条件及古典概型的计算公式是解题的关键.
找相似题
(2013·梧州)小李是9人队伍中的一员,他们随机排成一列队伍,从1开始按顺序报数,小李报到偶数的概率是( )
(2013·绍兴)一个不透明的袋子中有3个白球、2个黄球和1个红球,这些球除颜色可以不同外其他完全相同,则从袋子中随机摸出一个球是黄球的概率为( )
(2013·宁波)在一个不透明的布袋中装有3个白球和5个红球,它们除了颜色不同外,其余均相同.从中随机摸出一个球,摸到红球的概率是( )
(2012·枣庄)在一个不透明的盒子中装有8个白球,若干个黄球,它们除颜色不同外,其余均相同,若从中随机摸出一个球为白球的概率是
2
3
,则黄球的个数为( )
(2012·泰安)从下列四张卡片中任取一张,卡片上的图形是中心对称图形的概率是( )