试题

题目:
青果学院用反证法证明“三角形的三个内角中,至少有一个内角小于或等于60°”
证明:假设所求证的结论不成立,即
∠A
60°,∠B
60°,∠C
60°,
则∠A+∠B+∠C>
180°
180°

这与
内角和180°
内角和180°
相矛盾.
假设
假设
不成立.
求证的命题正确
求证的命题正确

答案



180°

内角和180°

假设

求证的命题正确

解:证明:假设所求证的结论不成立,即
∠A>60°,∠B>60°,∠C>60°,
则∠A+∠B+∠C>180°.
这与内角和为180°相矛盾.
则假设不成立.
则求证的命题正确.
故答案为:>,>,>,180°,内角和180°,假设,求证的命题正确.
考点梳理
反证法.
根据反证法证明方法,先假设结论不成立,然后得到与定理矛盾,从而证得原结论成立.
本题结合三角形内角和定理考查反证法,解此题关键要懂得反证法的意义及步骤.反证法的步骤是:
(1)假设结论不成立;(2)从假设出发推出矛盾;(3)假设不成立,则结论成立.
在假设结论不成立时要注意考虑结论的反面所有可能的情况,如果只有一种,那么否定一种就可以了,如果有多种情况,则必须一一否定.
推理填空题.
找相似题