试题
题目:
(2011·化州市二模)如图,点O是△ABC的内切圆的圆心,∠BAC=80°,求∠BOC的度数.
答案
解:∵∠BAC=80°,
∴∠ABC+∠ACB=180°-80°=100°,
∵点O是△ABC的内切圆的圆心,
∴BO,CO分别为∠ABC,∠BCA的角平分线,
∴∠OBC+∠OCB=50°,
∴∠BOC=130°.
解:∵∠BAC=80°,
∴∠ABC+∠ACB=180°-80°=100°,
∵点O是△ABC的内切圆的圆心,
∴BO,CO分别为∠ABC,∠BCA的角平分线,
∴∠OBC+∠OCB=50°,
∴∠BOC=130°.
考点梳理
考点
分析
点评
三角形的内切圆与内心.
运用三角形内角和定理得出∠ABC+∠ACB的度数,再根据点O是△ABC的内切圆的圆心,得出∠OBC+∠OCB=50°,从而得出答案.
此题主要考查了三角形的内切圆与内心,准确运用三角形内心的性质,是解决问题的关键.
找相似题
(2012·玉林)如图,Rt△ABC的内切圆⊙O与两直角边AB,BC分别相切于点D,E,过劣弧
DE
(不包括端点D,E)上任一点P作⊙O的切线MN与AB,BC分别交于点M,N,若⊙O的半径为r,则Rt△MBN的周长为( )
(2006·宜昌)如图,点O是△ABC的内切圆的圆心,若∠BAC=80°,则∠BOC=( )
(2006·崇左)等边三角形的外接圆面积是内切圆面积的( )
(2005·天津)如图,若正△A
1
B
1
C
1
内接于正△ABC的内切圆,则
A
1
B
1
AB
的值为( )
(2004·包头)如图,在△ABC中,已知∠C=90°,BC=6,AC=8,则它的内切圆半径是( )