试题
题目:
△ABC中,内切圆I和边BC、CA、AB分别相切于点D、E、F,则∠FDE与
1
2
∠A的关系是( )
A.∠FDE+
1
2
∠A=90°
B.∠FDE=
1
2
∠A
C.∠FDE+
1
2
∠A=180°
D.无法确定
答案
A
解:连接IE,IF,则有∠IEA=∠IFA=90°,
∴∠EIF=180°-∠A,
∴∠FDE=
1
2
∠EIF=90°-
1
2
∠A,
∴∠FDE+
1
2
∠A=90°.
故选A.
考点梳理
考点
分析
点评
专题
三角形的内切圆与内心;圆周角定理;切线的性质.
连接IE,IF,则有∠IEA=∠IFA=90°,∠EIF=180°-∠A,由圆周角定理知,∠FDE=
1
2
∠EIF=90°-
1
2
∠A,所以可求得∠FDE+
1
2
∠A=90°.
本题利用了切线的概念,圆周角定理求解.
综合题.
找相似题
(2012·玉林)如图,Rt△ABC的内切圆⊙O与两直角边AB,BC分别相切于点D,E,过劣弧
DE
(不包括端点D,E)上任一点P作⊙O的切线MN与AB,BC分别交于点M,N,若⊙O的半径为r,则Rt△MBN的周长为( )
(2006·宜昌)如图,点O是△ABC的内切圆的圆心,若∠BAC=80°,则∠BOC=( )
(2006·崇左)等边三角形的外接圆面积是内切圆面积的( )
(2005·天津)如图,若正△A
1
B
1
C
1
内接于正△ABC的内切圆,则
A
1
B
1
AB
的值为( )
(2004·包头)如图,在△ABC中,已知∠C=90°,BC=6,AC=8,则它的内切圆半径是( )