试题
题目:
如图,在△ABC中,AC=BC,E是内心,AE延长线交△ABC外接圆于D,以下四个结论中正确的个数是( )
①BE=AE;②CE⊥AB;③△DEB是等腰三角形;④
AB
AC
=
AE
ED
.
A.1个
B.2个
C.3个
D.4个
答案
D
解:∵E是内心,∴∠CAD=∠BAD,∠CBE=∠EBA,
点D为弧BC的中点,
∵AC=BC,且CE为∠ACB的平分线,
∴CE⊥AB(三线合一),选项②正确;
∵AC=BC,∠ACE=∠BCE,CE=CE,
∴△ACE≌△BCE,(SAS)
∴∠CAE=∠CBE,
∴BE=AE,选项①正确;
∵∠CAD=∠BAD,
∴
CD
=
BD
,
∴∠DBC=∠DAB,
∴∠EAB+∠EBA=∠DBC+∠EBC,即∠DEB=∠DBE,
∴DE=DB,
∴△DEB是等腰三角形,选项③正确;
∵△ABC和△BED都为等腰三角形,且两顶角∠ACB=∠EDB,
∴△ABC∽△BED,
∴
AB
BE
=
AC
BD
,
∴
AB
AC
=
BE
BD
,
∵DE=DB,BE=AE,
∴
AB
AC
=
AE
ED
,选项④正确,
∴正确结论有4个.
故选D.
考点梳理
考点
分析
点评
专题
三角形的内切圆与内心;等腰三角形的判定与性质;相似三角形的判定与性质.
根据E是内心,可得出∠CAD=∠BAD,则点D为弧BC的中点,又由AC=BC,得CE⊥AB;则延长BE交圆于一点也一定是弧AC的中点,则BE=AE;根据同弧所对的圆周角相等,得出三角形DEB与ABC三个角分别对应相等.则三角形DEB与ABC相似,从而得出第4个结论正确.
本题考查了三角形的内心,等腰三角形的判定和性质以及相似三角形的判定和性质.
证明题;压轴题.
找相似题
(2012·玉林)如图,Rt△ABC的内切圆⊙O与两直角边AB,BC分别相切于点D,E,过劣弧
DE
(不包括端点D,E)上任一点P作⊙O的切线MN与AB,BC分别交于点M,N,若⊙O的半径为r,则Rt△MBN的周长为( )
(2006·宜昌)如图,点O是△ABC的内切圆的圆心,若∠BAC=80°,则∠BOC=( )
(2006·崇左)等边三角形的外接圆面积是内切圆面积的( )
(2005·天津)如图,若正△A
1
B
1
C
1
内接于正△ABC的内切圆,则
A
1
B
1
AB
的值为( )
(2004·包头)如图,在△ABC中,已知∠C=90°,BC=6,AC=8,则它的内切圆半径是( )