试题
题目:
如图,将一张正方形纸片,第1次剪成四个大小形状一样的小正方形,第2次将其中的一个小正方形再按同样的方法剪成四个小正方形,然后再将其中的一个小正方形剪成四个小正方形,如此循环进行下去,如果共剪n次,则可剪出
3n+1
3n+1
个正方形.
答案
3n+1
解:根据题意可知:后一个图形中的个数总比前一个图形中的个数多3个,
即剪第1次时,可剪出4个正方形;
剪第2次时,可剪出7个正方形;
剪第3次时,可剪出10个正方形;
剪第4次时,可剪出13个正方形;
…
剪n次时,共剪出小正方形的个数为:4+3(n-1)=3n+1.
故答案为:3n+1.
考点梳理
考点
分析
点评
专题
剪纸问题;规律型:图形的变化类.
根据题意可以发现:每一次剪的时候,都是把上一次的图形中的一个进行剪.所以在4的基础上,依次多3个,继而解答各题即可.
本题考查剪纸问题,同时考查规律型中的图形变化问题,同时考查学生观察、分析、归纳和应用规律的能力.
规律型.
找相似题
(2012·钦州)如图所示,把一张矩形纸片对折,折痕为AB,在把以AB的中点O为顶点的平角∠AOB三等分,沿平角的三等分线折叠,将折叠后的图形剪出一个以O为顶点的等腰三角形,那么剪出的等腰三角形全部展开平铺后得到的平面图形一定是( )
(2011·吉林)如图所示,将一个正方形纸片按下列顺序折叠,然后将最后折叠的纸片沿虚线剪去一个三角形和一个形如“1”的图形,将纸片展开,得到的图形是( )
(2010·玉溪)如图是把一张长方形的纸沿长边中点的连线对折两次后得到的图形.再沿虚线裁剪,外面部分展开后的图形是( )
(2009·广东)如图所示的矩形纸片,先沿虚线按箭头方向向右对折,接着将对折后的纸片沿虚线剪下一个小圆和一个小三角形,然后将纸片打开是下列图中的哪一个( )
(2009·大连)将一张等边三角形纸片按图①所示的方式对折,再按图②所示的虚线剪去一个小三角形,将余下纸片展开得到的图案是( )