试题
题目:
据初三(1)班的一个社会调查小组调查,某行包寄存处在某日的存包量为400包次,其中大包存费是每个一次3元,小包存费是每个一次2元,若小包寄存为x包次,存包费总收入为y元,则y关于x的函数关系式是
y=-x+1200
y=-x+1200
.
答案
y=-x+1200
解:∵小包存费是每个一次2元,小包寄存为x包次,
∴小包总存费为2x,
∵小包寄存为x包次,存包量为400包次,
∴大包寄存为(400-x)包次
∵大包存费是每个一次3元,
∴大包总存费为(400-x)×3=1200-3x,
∴y=2x+(1200-3x)=-x+1200,
故答案为:y=-x+1200.
考点梳理
考点
分析
点评
专题
根据实际问题列一次函数关系式.
应先求得存的大包的包次;存包费总收入=大包总存费+小包总存费,把相关数值代入即可求解.
考查列一次函数关系式,得到存包费总收入的等量关系是解决本题的关键.
经济问题.
找相似题
(2006·吉林)鲁老师乘车从学校到省城去参加会议,学校距省城200千米,车行驶的平均速度为80千米/时.x小时后鲁老师距省城y千米,则y与x之间的函数关系式为( )
(2013·香坊区一模)为响应“低碳生活”的号召,李明决定每天骑自行车上学,有一天李明骑了1000米后,自行车发生了故障,修车耽误了5分钟,车修好后李明继续骑行,用了8分钟骑行了剩余的800米,到达学校(假设在骑车过程中匀速行驶).若设他从家开始去学校的时间为t(分钟),离家的路程为y(千米),则y与t(15<t≤23)的函数关系为( )
(2012·道外区二模)从A地向B地打长途电话,通话3分以内收费2.4元,3分后每增加通话时间1分加收1元,若通话时间为x(单位:分,x≥3且x为整数),则通话费用y(单位:元)与通话时间x(分)函数关系式是( )
某山山脚的气温是10℃,此山高度每上升1千米,气温下降6℃,设比山脚高出x千米处的气温为y℃,y和x的函数关系式为( )
某水池现有水100m
3
,每小时进水20m
3
,排水15m
3
,t小时后水池中的水为Qm
3
,它的解析式为( )