试题
题目:
某童装厂现有甲种布料38米,乙种布料26米,现计划用这两种布料生产L、M两种型号的童装共50套,已知做一套L型号的童装需用甲种布料0.5米,乙种布料1米,可获利45元;做一套M型号的童装需用甲种布料0.9米,乙种布料0.2米,可获利润30元.设生产L型号的童装套数为x,用这批布料生产这两种型号的童装所获利润为y(元);写出y(元)关于x(套)的函数解析式
y=15x+1500
y=15x+1500
,自变量x的取值范围
18、19、20
18、19、20
.
答案
y=15x+1500
18、19、20
解:根据题意得:y=45x+30×(50-x)=15x+1500(17.5≤x≤20),
∴x取值18,19,20.
故答案为:y=15x+1500;18、19、20.
考点梳理
考点
分析
点评
专题
根据实际问题列一次函数关系式.
生产L型号的童装套数为x(套),则生产M型号的童装套数为50-x(套).则y=45x+30×(50-x)=15x+1500,由于L为X件,则M为(50-x)件,得不等式组0.5X+0.9(50-X)≤38,X+0.2(50-X)≤26,可得17.5≤x≤20;
本题是贴近社会生活的应用题,赋予了生活气息,使学生真切地感受到“数学来源于生活”,体验到数学的“有用性”.这样设计体现了《新课程标准》的“问题情景-建立模型-解释、应用和拓展”的数学学习模式.
计算题.
找相似题
(2006·吉林)鲁老师乘车从学校到省城去参加会议,学校距省城200千米,车行驶的平均速度为80千米/时.x小时后鲁老师距省城y千米,则y与x之间的函数关系式为( )
(2013·香坊区一模)为响应“低碳生活”的号召,李明决定每天骑自行车上学,有一天李明骑了1000米后,自行车发生了故障,修车耽误了5分钟,车修好后李明继续骑行,用了8分钟骑行了剩余的800米,到达学校(假设在骑车过程中匀速行驶).若设他从家开始去学校的时间为t(分钟),离家的路程为y(千米),则y与t(15<t≤23)的函数关系为( )
(2012·道外区二模)从A地向B地打长途电话,通话3分以内收费2.4元,3分后每增加通话时间1分加收1元,若通话时间为x(单位:分,x≥3且x为整数),则通话费用y(单位:元)与通话时间x(分)函数关系式是( )
某山山脚的气温是10℃,此山高度每上升1千米,气温下降6℃,设比山脚高出x千米处的气温为y℃,y和x的函数关系式为( )
某水池现有水100m
3
,每小时进水20m
3
,排水15m
3
,t小时后水池中的水为Qm
3
,它的解析式为( )