试题
题目:
一根弹簧的原长为12cm,它能挂的重量不能超过15kg并且每挂重1kg就伸长
1
2
cm,写出挂重后的弹簧长度y(cm)与挂重x(kg)之间的函数关系式是( )
A.y=
1
2
x+12(0<x≤15)
B.y=
1
2
x+12(0≤x<15)
C.y=
1
2
x+12(0≤x≤15)
D.y=
1
2
x+12(0<x<15)
答案
C
解:设挂重为x,则弹簧伸长为
1
2
x,
挂重后弹簧长度y(cm)与挂重x(kg)之间的函数关系式是:y=
1
2
x+12 (0≤x≤15).
故选C.
考点梳理
考点
分析
点评
专题
根据实际问题列一次函数关系式.
根据函数的概念:函数中的每个值x,变量y按照一定的法则有一个确定的值y与之对应,解答即可.
本题考查根据实际问题列一次函数关系式的问题,解题关键在于根据题意列出等式,然后再变形为要求的形式.
常规题型.
找相似题
(2006·吉林)鲁老师乘车从学校到省城去参加会议,学校距省城200千米,车行驶的平均速度为80千米/时.x小时后鲁老师距省城y千米,则y与x之间的函数关系式为( )
(2013·香坊区一模)为响应“低碳生活”的号召,李明决定每天骑自行车上学,有一天李明骑了1000米后,自行车发生了故障,修车耽误了5分钟,车修好后李明继续骑行,用了8分钟骑行了剩余的800米,到达学校(假设在骑车过程中匀速行驶).若设他从家开始去学校的时间为t(分钟),离家的路程为y(千米),则y与t(15<t≤23)的函数关系为( )
(2012·道外区二模)从A地向B地打长途电话,通话3分以内收费2.4元,3分后每增加通话时间1分加收1元,若通话时间为x(单位:分,x≥3且x为整数),则通话费用y(单位:元)与通话时间x(分)函数关系式是( )
某山山脚的气温是10℃,此山高度每上升1千米,气温下降6℃,设比山脚高出x千米处的气温为y℃,y和x的函数关系式为( )
某水池现有水100m
3
,每小时进水20m
3
,排水15m
3
,t小时后水池中的水为Qm
3
,它的解析式为( )