一次函数综合题.
(1)已知了圆的半径就知道了AB的长,已知了A的坐标,就知道了OA的长,根据勾股定理就能求出OB的长,因此B点的坐标就求出来了;
(2)可通过构建三角形来求解.连接OM,则MO⊥OC,三角形MOC和AOB中,已知了一组直角,在(1)中我们求得OB=OM=1,因此∠OMB=∠OBM,因此两三角形全等,那么∠OAC=∠OCA,在(1)中求出了OB的值,有AB的值,那么∠OAC的度数就不难求出了,也就求出了∠OCA的度数;
(3)关键是求出C的坐标,可通过构建三角形来求解.由(2)得出的全等三角形我们知道:OC=OA=
,∠OAC=∠OCA=30°,因此∠COD=60°,因此可求出CD,OD的长,也就求出了C的坐标,可用待定系数法求出正比例函数的函数式.
本题的解题关键是通过直角三角形求出线段的长进而得出点的坐标.
综合题;压轴题.