题目:

如图直线
y=-x+2分别交x轴、y轴于点A和B,点P(t,0)是x轴上一动点,P、Q两点关于直线AB轴对称,PQ交AB于点M,作QH⊥x轴于点H.
(1)求tan∠OAB的值;
(2)当QH=2时,求P的坐标;
(3)连接OQ,是否存在t的值,使△OQH与△APM相似?若存在,求出t的值;若不存在,说明理由.
答案
解:(1)令y=0,则-
x+2=0,解得x=4,
令x=0,则y=2,
所以,点A(4,0),B(0,2),
所以,OA=4,OB=2,
tan∠OAB=
=
=
;
(2)根据勾股定理,AB=
=
=2
,
∵P、Q两点关于直线AB轴对称,
∴∠OAB+∠QPH=90°,
∴sin∠QPH=cos∠OAB=
=
,
cos∠QPH=sin∠OAB=
=
,
∵QH⊥x轴,QH=2,
∴PQ=QH÷sin∠QPH=2÷
=
,
∵P、Q两点关于直线AB轴对称,PQ交AB于点M,
∴PM=
PQ=
,
∴AP=PM÷sin∠OAB=
÷
=
,
①当点P在点A的左边时,OP=OA-AP=4-
=
,
此时,点P的坐标是(
,0),
②当点P在点A的右边时,OP=OA+AP=4+
=
,
此时,点P的坐标是(
,0);
故,点P的坐标为(
,0)或(
,0);
(3)①当点P在点A的左边时,
∵点P的坐标为(t,0),
∴AP=4-t,PM=AP·sin∠OAB=
(4-t),
∵P、Q两点关于直线AB轴对称,PQ交AB于点M,
∴PQ=2PM=
(4-t),
QH=PQ·sin∠QPH=
(4-t)×
=
,
PH=PQ·cos∠QPH=
(4-t)×
=
,
当点P在点O右侧时,OH=OP+PH=t+
=
,
∵△OQH与△APM相似,
∴
=
=tan∠OAB或
=
=tan∠OAB,
即
=
或
=
,
解得t=0或t=
;
当点P在点O左侧时,OH=OP-PH=(-t)-
=-
,
∵△OQH与△APM相似,
∴
=
=tan∠OAB或
=
=tan∠OAB,
即
=
或
=
,
解得t=-16或t=8(舍去);
②当点P在点A的左边时,
∵点P的坐标为(t,0),
∴AP=t-4,PM=AP·sin∠OAB=
(t-4),
∵P、Q两点关于直线AB轴对称,PQ交AB于点M,
∴PQ=2PM=
(t-4),
QH=PQ·sin∠QPH=
(t-4)×
=
,
PH=PQ·cos∠QPH=
(t-4)×
=
,
∴OH=OP-PH=t-
=
,
∵△OQH与△APM相似,
∴
=
=tan∠OAB或
=
=tan∠OAB,
即
=
或
=
,
解得t=-16(舍去)或t=8,
综上所述,存在t的值,t=0或t=
或t=-16或t=8,使△OQH与△APM相似.
解:(1)令y=0,则-
x+2=0,解得x=4,
令x=0,则y=2,
所以,点A(4,0),B(0,2),
所以,OA=4,OB=2,
tan∠OAB=
=
=
;
(2)根据勾股定理,AB=
=
=2
,
∵P、Q两点关于直线AB轴对称,
∴∠OAB+∠QPH=90°,
∴sin∠QPH=cos∠OAB=
=
,
cos∠QPH=sin∠OAB=
=
,
∵QH⊥x轴,QH=2,
∴PQ=QH÷sin∠QPH=2÷
=
,
∵P、Q两点关于直线AB轴对称,PQ交AB于点M,
∴PM=
PQ=
,
∴AP=PM÷sin∠OAB=
÷
=
,
①当点P在点A的左边时,OP=OA-AP=4-
=
,
此时,点P的坐标是(
,0),
②当点P在点A的右边时,OP=OA+AP=4+
=
,
此时,点P的坐标是(
,0);
故,点P的坐标为(
,0)或(
,0);
(3)①当点P在点A的左边时,
∵点P的坐标为(t,0),
∴AP=4-t,PM=AP·sin∠OAB=
(4-t),
∵P、Q两点关于直线AB轴对称,PQ交AB于点M,
∴PQ=2PM=
(4-t),
QH=PQ·sin∠QPH=
(4-t)×
=
,
PH=PQ·cos∠QPH=
(4-t)×
=
,
当点P在点O右侧时,OH=OP+PH=t+
=
,
∵△OQH与△APM相似,
∴
=
=tan∠OAB或
=
=tan∠OAB,
即
=
或
=
,
解得t=0或t=
;
当点P在点O左侧时,OH=OP-PH=(-t)-
=-
,
∵△OQH与△APM相似,
∴
=
=tan∠OAB或
=
=tan∠OAB,
即
=
或
=
,
解得t=-16或t=8(舍去);
②当点P在点A的左边时,
∵点P的坐标为(t,0),
∴AP=t-4,PM=AP·sin∠OAB=
(t-4),
∵P、Q两点关于直线AB轴对称,PQ交AB于点M,
∴PQ=2PM=
(t-4),
QH=PQ·sin∠QPH=
(t-4)×
=
,
PH=PQ·cos∠QPH=
(t-4)×
=
,
∴OH=OP-PH=t-
=
,
∵△OQH与△APM相似,
∴
=
=tan∠OAB或
=
=tan∠OAB,
即
=
或
=
,
解得t=-16(舍去)或t=8,
综上所述,存在t的值,t=0或t=
或t=-16或t=8,使△OQH与△APM相似.