试题

题目:
青果学院如图,在平面直角坐标系中,函数y=x的图象l是第一、三象限的角平分线.
(1)实验与探究:由图观察易知A(0,2)关于直线l的对称点A′的坐标为(2,0),请在图中分别标明B(5,3)、C(-2,5)关于直线l的对称点B′、C′的位置,并写出它们的坐标:B′
(3,5)
(3,5)
、C′
(5,-2)
(5,-2)

(2)归纳与发现:结合图形观察以上三组点的坐标,你会发现:坐标平面内任一点P(m,n)关于第一、三象限的角平分线l的对称点P′的坐标为
(n,m)
(n,m)

(3)类比与猜想:坐标平面内任一点P(m,n)关于第二、四象限的角平分线的对称点P′的坐标为
(-n,-m)
(-n,-m)

(4)运用与拓广:已知两点D(0,-3)、E(-1,-4),试在第一、三象限的角平分线l上确定一点Q,使点Q到D、E两点的距离之和最小,并求出Q点坐标.
答案
(3,5)

(5,-2)

(n,m)

(-n,-m)

青果学院解:(1)∵A(0,2)关于直线l的对称点A′的坐标为(2,0),
∴B(5,3)、C(-2,5)关于直线l的对称点B′(3,5),C′(5,-2),
故答案为:(3,5);(5,-2)

(2)∵A(0,2)关于直线l的对称点A′的坐标为(2,0),
∴关于直线l对称的点的坐标横纵坐标互为相反数,
∴点P(m,n)关于第一、三象限的角平分线l的对称点P′的坐标为(n,m).
故答案为:(n,m);

(3)猜想:坐标平面内任一点P(m,n)关于第二、四象限的角平分线的对称点P′的坐标为:(-n,-m),
故答案为::(-n,-m);

(4)∵点D关于直线y=x的对称点D′(-3,0),
设过点D′E的直线解析式为y=kx+b(k≠0),
∵D′(-3,0),E(-1,-4),
-3k+b=0
-k+b=-4
,解得
k=-2
b=-6

∴直线D′E的解析式为y=-2x-6,
∵点Q是直线D′E与直线y=x相交与点Q,
y=-2x-6
y=x
,解得
x=-2
y=-2

∴Q(-2,-2)
考点梳理
一次函数综合题.
(1)根据A(0,2)关于直线l的对称点A′的坐标为(2,0)进行解答;
(2)根据关于直线y=x对称的点的坐标特点进行解答;
(3)根据关于直线y=-x的对称的点的坐标特点进行解答;
(4)求出点D关于直线y=-x的对称点D′,利用待定系数法求出直线D′E的解析式,求出直线D′E与直线y=-x的交点坐标即为Q点的坐标.
本题考查的是一次函数综合题,涉及到关于直线y=x,y=-x的点的坐标特点、轴对称-最短路线问题等知识,难度适中.
探究型.
找相似题