试题
题目:
(2012·崇安区二模)已知等腰梯形ABCD中,A (-3,0),B (4,0),C (2,2),一条直线y=-
3
2
x+b将梯形ABCD面积等分,则b=
7
4
7
4
.
答案
7
4
解:过点C作CE⊥AB于E,作DF⊥AB于F,
∴∠DFA=∠CEB=90°,
∵梯形ABCD是等腰梯形,
∴AD=BC,∠DAF=∠CBE,
在△ADF和△BCE中,
∠DAF=∠CBE
∠DFA=∠CEB
AD=BC
,
∴△ADF≌△BCE(AAS),
∴AF=BE,
∵A(-3,0),B(4,0),C(2,2),
∴AB=7,BE=2,OA=3,CE=DF=2,
∴AF=2,
∴OF=1,
∴点D(-1,2),
∴CD=3,
∴S
梯形ABCD
=
1
2
(AB+CD)×CE=
1
2
×(3+7)×2=10,
设直线y=-
3
2
x+b与梯形ABCD分别交于点M,N,
∴点M(
2
3
b,0),点N(
2
3
(b-2),2),
∴S
梯形DAMN
=
2{[
2
3
(b-2)+1]+(
2
3
b+3)}
2
,
S
梯形CNMB
=
2{(4-
2
3
b)+[2-
2
3
(b-2)]}
2
,
∴
2{[
2
3
(b-2)+1]+(
2
3
b+3)}
2
=
2{(4-
2
3
b)+[2-
2
3
(b-2)]}
2
,
解得,b=
7
4
.
故答案为
7
4
.
考点梳理
考点
分析
点评
专题
一次函数综合题.
过点C作CE⊥AB于E,作DF⊥AB于F,根据梯形ABCD是等腰梯形,得到AD=BC,∠DAF=∠CBE,从而推出△ADF≌△BCE,根据全等三角形的性质求出AF=BE,可以得到A、B、C的坐标,再根据等腰梯形及矩形的性质求出D点坐标,求出直线与梯形上下底的交点坐标(含字母b),将梯形分为DAMN和CNMB两个梯形,建立等式即可.
本题考查了一次函数的性质和等腰梯形的性质,求出直线与梯形上、下底的交点坐标,将梯形分为两个梯形是解题的关键.
计算题;压轴题.
找相似题
(2011·仙桃)如图,已知直线l:y=
3
3
x,过点A(0,1)作y轴的垂线交直线l于点B,过点B作直线l的垂线交y轴于点A
1
;过点A
1
作y轴的垂线交直线l于点B
1
,过点B
1
作直线l的垂线交y轴于点A
2
;…;按此作法继续下去,则点A
4
的坐标为( )
(2009·宁波)如图,点A,B,C在一次函数y=-2x+m的图象上,它们的横坐标依次为-1,1,2,分别过这些点作x轴与y轴的垂线,则图中阴影部分的面积之和是( )
(2013·温州二模)如图,P为正比例函数y=2x图象上的一个动点,⊙P的半径为2,圆心P从点(-3,-6),开始以每秒1个单位的速度沿着直线y=2x运动,当⊙P与直线x=2相切时,则该圆运动的时间为( )秒.
(2013·天桥区二模)如图,在平面直角坐标系中,多边形OABCDE的顶点坐标分别是O(0,0),A(0,6),B(4,6),C(4,4),D(6,4),E(6,0).若直线l经过点M(2,3),且将多边形OABCDE分割成面积相等的两部分,则下列各点在直线l上的是( )
(2013·乐山模拟)如图,已知A、B两点的坐标分别为(8,0)、(0,-6),⊙C的圆心坐标为(0,7),半径为5.若P是⊙C上的一个动点,线段PB与x轴交于点D,则△ABD面积的最大值是( )