试题
题目:
欧拉的遗产问题.
一位老人打算按如下次序和方式分配他的遗产:
老大分100元和剩下遗产的10%;
老二分200元和剩下遗产的10%;
老三分300元和剩下遗产的10%;
第四分400元和剩下遗产的10%;
…
结果,每个儿子分得的遗产一样多,问:这位老人共有几个儿子?
答案
解:设遗产总数为x元,因为每个儿子分得的遗产相等,所以选取第一个儿子和第二个儿子分得的遗产的代数式列出方程:
100+
1
10
( x-100)=200+
1
10
{ x-[100+
1
10
(x-100)]-200},
解得 x=8100.
每人所得遗产:100+
1
10
(8100-100)=900 (元),
8100÷900=9(人),
∴这位老人共有9个儿子.
解:设遗产总数为x元,因为每个儿子分得的遗产相等,所以选取第一个儿子和第二个儿子分得的遗产的代数式列出方程:
100+
1
10
( x-100)=200+
1
10
{ x-[100+
1
10
(x-100)]-200},
解得 x=8100.
每人所得遗产:100+
1
10
(8100-100)=900 (元),
8100÷900=9(人),
∴这位老人共有9个儿子.
考点梳理
考点
分析
点评
一元一次方程的应用;推理与论证.
根据老大分得的财产为100+(总遗产-老大的100)×
1
10
;老二分得的财产为:200+(总遗产-老大的全部财产-老二的200)×
1
10
;让老大的遗产数量等于老二的遗产数量可得总遗产数,进而代入所列等式的左边可得每个儿子分得的遗产,再利用总的遗产除以每一分得的遗产即可得出这位老人儿子的人数.
此题主要考查了推理与论证以及一元一次方程的应用;得到老大和老二分得遗产的代数式是解决本题的突破点.
找相似题
(2013·台湾)图(①)为雅婷左手拿着3张深灰色与2张浅灰色的牌迭在一起的情形.以下是她每次洗牌的三个步骤:
步骤一:用右手拿出迭在最下面的2张牌,如图(②).
步骤二:将右手拿的2张牌依序交错插入左手拿的3张牌之间,如图(③).
步骤三:用左手拿着颜色顺序已改变的5张牌,如图(④).
若依上述三个步骤洗牌,从图(①)的情形开始洗牌若干次后,其颜色顺序会再次与图(①)相同,则洗牌次数可能为下列何者?( )
(2010·鞍山)某快餐店肉类食品有5种,蔬菜类食品有8种,饮料类有3种,花15元可以任选其一肉类,一饮料类和二蔬菜类,那么有几种选择( )
(2008·恩施州)甲、乙、丙、丁四个小朋友在院里玩球,忽听“砰”的一声,球击中了李大爷家的窗户.李大爷跑出来查看,发现一块窗户玻璃被打裂了.李大爷问:“是谁闯的祸?”
甲说:“是乙不小心闯的祸.”
乙说:“是丙闯的祸.”
丙说:“乙说的不是实话.”
丁说:“反正不是我闯的祸.”
如果这四个小朋友中只有一个人说了实话,请你帮李大爷判断一下,究竟是谁闯的祸( )
(2007·台湾)有30张分别标示1~30号的纸牌.先将号码数为3的倍数的纸牌拿掉,然后从剩下的纸牌中,拿掉号码数为2的倍数的纸牌.若将最后剩下的纸牌,依号码数由小到大排列,则第5张纸牌的号码为( )
(2007·德州)假定有一排蜂房,形状如图,一只蜜蜂在左下角的蜂房中,由于受伤,只能爬,不能飞,而且只能永远向右方(包括右上、右下)爬行,从一间蜂房爬到与之相邻的右蜂房中去.则从最初位置爬到4号蜂房中,不同的爬法有( )