试题
题目:
若直线y=
1
2
x+2分别交x轴、y轴于A、C两点,点P是该直线上在第一象限内的一点,PB⊥x轴,B为垂足,且S
△ABC
=6.
(1)求点B和P的坐标.
(2)过点B画出直线BQ∥AP,交y轴于点Q,并直接写出点Q的坐标.
答案
解:(1)y=0时,
1
2
x+2=0,解得x=-4,
x=0时,y=2,
所以,A(-4,0),C(0,2),
由题意,设点P的坐标为(a,
1
2
a+2),且a>0,
∵PB⊥x轴,
∴B(a,0),
∴AB=a+4,
∵S
△ABC
=6,
∴
1
2
(a+4)×2=6,
解得a=2,
∴B(2,0),P(2,3);
(2)直线PQ如图所示,
∵BQ∥AP,点B(2,0),
∴直线BQ的解析式为y=
1
2
x-1,
令x=0,则y=-1,
所以,点Q的坐标为(0,-1).
解:(1)y=0时,
1
2
x+2=0,解得x=-4,
x=0时,y=2,
所以,A(-4,0),C(0,2),
由题意,设点P的坐标为(a,
1
2
a+2),且a>0,
∵PB⊥x轴,
∴B(a,0),
∴AB=a+4,
∵S
△ABC
=6,
∴
1
2
(a+4)×2=6,
解得a=2,
∴B(2,0),P(2,3);
(2)直线PQ如图所示,
∵BQ∥AP,点B(2,0),
∴直线BQ的解析式为y=
1
2
x-1,
令x=0,则y=-1,
所以,点Q的坐标为(0,-1).
考点梳理
考点
分析
点评
一次函数的性质.
(1)先根据直线解析式求出点A、C的坐标,然后利用直线解析式设出点P的坐标为(a,
1
2
a+2),即可得到点B的坐标(a,0),然后根据△ABC的面积列式求出a的值,从而得解;
(2)根据平行直线的解析式的k值相等写出直线BQ的解析式,令x=0,求解即可得到点Q的坐标.
本题考查了一次函数的性质,主要利用了直线与坐标轴的交点的求解方法,点在一次函数图象上的特征,利用直线解析式设出点P的坐标,然后根据三角形的面积列式求解释解题的关键.
找相似题
(2009·株洲)一次函数y=x+2的图象不经过( )
(2009·十堰)一次函数y=2x-2的图象不经过的象限是( )
(2008·上海)在平面直角坐标系中,直线y=x+1经过( )
(2002·扬州)下列说法:①
π
3
是有理数;②30476保留三个有效数字的近似值为3.05×10
4
;③
a
2
+1
是最简二次根式;④直线y=-2x+3不经过第三象限.其中说法正确的有( )
(2002·聊城)一次函数y=-3x+2的图象不经过( )