题目:

如图,在平行四边形ABCD中,EF∥BC,GH∥AB,EF、GH的交点P在BD上.图中有
5
5
对四边形面积相等,它们是
S·AEPG=S·PHCF,S·ABHG=S·EBCF,S·AEFD=S·CDGH
S四边形ABPG=S四边形CBPF;S四边形ADPE=S四边形CDPH
S·AEPG=S·PHCF,S·ABHG=S·EBCF,S·AEFD=S·CDGH
S四边形ABPG=S四边形CBPF;S四边形ADPE=S四边形CDPH
.
答案
5
S·AEPG=S·PHCF,S·ABHG=S·EBCF,S·AEFD=S·CDGH
S四边形ABPG=S四边形CBPF;S四边形ADPE=S四边形CDPH
解:∵在平行四边形ABCD中,BD是对角线,EF∥BC,GH∥AB,
∴S
△ABD=S
△DBC,S
△BEP=S
△BHP,S
△GPD=S
△DPF,
∴S
△ABD-S
△BEP-S
△GPD=S
△DBC-S
△BHP-S
△DPF,
∴S
·AEPG=S
·PHCF,
∴S
·AEPG+S
·EBHP=S
·PHCF+S
·EBHP,
即,S
·ABGH=S
·EBCF,
同理,S
·AEFD=S
·CDGH,
S
四边形ABPG=S
四边形CBPF;S
四边形ADPE=S
四边形CDPH∴图中有5对四边形面积相等,即:S
·AEPG=S
·PHCF,S
·ABHG=S
·EBCF,S
·AEFD=S
·CDGH,S
四边形ABPG=S
四边形CBPF;S
四边形ADPE=S
四边形CDPH.