试题
题目:
(2009·长春)如图,在平行四边形ABCD中,∠BAD=32°.分别以BC、CD为边向外作△BCE和△DCF,使BE=BC,DF=DC,∠EBC=∠CDF,延长AB交边EC于点G,点G在E、C两点之间,连接AE、AF.
(1)求证:△ABE≌△FDA;
(2)当AE⊥AF时,求∠EBG的度数.
答案
(1)证明:在平行四边形ABCD中,AB=DC,
又∵DF=DC,
∴AB=DF.
同理EB=AD.
在平行四边形ABCD中,∠ABC=∠ADC,
又∵∠EBC=∠CDF,
∴∠ABE=360°-∠ABC-∠EBC,∠ADF=360°-∠ADC-∠CDF,
∴∠ABE=∠ADF.
∴△ABE≌△FDA(SAS).
(2)即:∵△ABE≌△FDA,
∴∠AEB=∠DAF.
∵∠EBG=∠EAB+∠AEB,
∴∠EBG=∠DAF+∠EAB,
∵AE⊥AF,
∴∠EAF=90°.
∵∠BAD=32°,
∴∠EAF-∠DAB=90°-32°=58°.
∴∠EBG=58°.
(1)证明:在平行四边形ABCD中,AB=DC,
又∵DF=DC,
∴AB=DF.
同理EB=AD.
在平行四边形ABCD中,∠ABC=∠ADC,
又∵∠EBC=∠CDF,
∴∠ABE=360°-∠ABC-∠EBC,∠ADF=360°-∠ADC-∠CDF,
∴∠ABE=∠ADF.
∴△ABE≌△FDA(SAS).
(2)即:∵△ABE≌△FDA,
∴∠AEB=∠DAF.
∵∠EBG=∠EAB+∠AEB,
∴∠EBG=∠DAF+∠EAB,
∵AE⊥AF,
∴∠EAF=90°.
∵∠BAD=32°,
∴∠EAF-∠DAB=90°-32°=58°.
∴∠EBG=58°.
考点梳理
考点
分析
点评
专题
平行四边形的性质;全等三角形的判定与性质.
(1)根据已知及全等三角形的判定方法进行分析,从而不难求得结论;
(2)根据第一问的结论及已知可得到:∠EBG=∠BEA+∠BAE.
本题主要考查平行四边形的性质及全等三角形的判定方法的综合运用.
计算题;证明题.
找相似题
(2013·无锡)已知点A(0,0),B(0,4),C(3,t+4),D(3,t).记N(t)为·ABCD内部(不含边界)整点的个数,其中整点是指横坐标和纵坐标都是整数的点,则N(t)所有可能的值为( )
(2013·无锡)如图,平行四边形ABCD中,AB:BC=3:2,∠DAB=60°,E在AB上,且AE:EB=1:2,F是BC的中点,过D分别作DP⊥AF于P,DQ⊥CE于Q,则DP:DQ等于( )
(2013·湖北)若平行四边形的一边长为2,面积为
4
6
,则此边上的高介于( )
(2013·杭州)在·ABCD中,下列结论一定正确的是( )
(2013·海南)如图,在·ABCD中,AC与BD相交于点O,则下列结论不一定成立的是( )