试题
题目:
(2011·永州)如图,BD是·ABCD的对角线,∠ABD的平分线BE交AD于点E,∠CDB的平分线DF交BC于点F.
求证:△ABE≌△CDF.
答案
证明:∵∠ABD的平分线BE交AD于点E,
∴∠ABE=
1
2
∠ABD,
∵∠CDB的平分线DF交BC于点F,
∴∠CDF=
1
2
∠CDB,
∵在平行四边形ABCD中,
∴AB∥CD,
∴∠ABD=∠CDB,
∴∠CDF=∠ABE,
∵四边形ABCD是平行四边形,
∴CD=AB,∠A=∠C,
即
∠A=∠C
AB=DC
∠ABE=∠CDF
,
∴△ABE≌△CDF(ASA),
证明:∵∠ABD的平分线BE交AD于点E,
∴∠ABE=
1
2
∠ABD,
∵∠CDB的平分线DF交BC于点F,
∴∠CDF=
1
2
∠CDB,
∵在平行四边形ABCD中,
∴AB∥CD,
∴∠ABD=∠CDB,
∴∠CDF=∠ABE,
∵四边形ABCD是平行四边形,
∴CD=AB,∠A=∠C,
即
∠A=∠C
AB=DC
∠ABE=∠CDF
,
∴△ABE≌△CDF(ASA),
考点梳理
考点
分析
点评
专题
全等三角形的判定;平行四边形的性质.
首先根据角平分线性质与平行线性质证明∠ABD=∠CDB,再根据平行四边形性质证出CD=AB,∠A=∠C,可利用ASA定理判定△ABE≌△CDF.
此题主要考查了角平分线性质与平行线性质,平行四边形性质以及全等三角形的判定,熟练掌握各个知识点是解题的关键.
证明题.
找相似题
(2013·无锡)已知点A(0,0),B(0,4),C(3,t+4),D(3,t).记N(t)为·ABCD内部(不含边界)整点的个数,其中整点是指横坐标和纵坐标都是整数的点,则N(t)所有可能的值为( )
(2013·无锡)如图,平行四边形ABCD中,AB:BC=3:2,∠DAB=60°,E在AB上,且AE:EB=1:2,F是BC的中点,过D分别作DP⊥AF于P,DQ⊥CE于Q,则DP:DQ等于( )
(2013·湖北)若平行四边形的一边长为2,面积为
4
6
,则此边上的高介于( )
(2013·杭州)在·ABCD中,下列结论一定正确的是( )
(2013·海南)如图,在·ABCD中,AC与BD相交于点O,则下列结论不一定成立的是( )