试题
题目:
(2012·广安)如图,四边形ABCD是平行四边形,点E在BA的延长线上,且BE=AD,点F在AD上,AF=AB,求证:△AEF≌△DFC.
答案
证明:∵四边形ABCD是平行四边形,
∴AB=CD,AB∥CD,
∴∠D=∠EAF,
∵AF=AB,BE=AD,
∴AF=CD,AD-AF=BE-AB,
即DF=AE,
在△AEF和△DFC中,
AE=DF
∠EAF=∠D
AF=DC
,
∴△AEF≌△DFC(SAS).
证明:∵四边形ABCD是平行四边形,
∴AB=CD,AB∥CD,
∴∠D=∠EAF,
∵AF=AB,BE=AD,
∴AF=CD,AD-AF=BE-AB,
即DF=AE,
在△AEF和△DFC中,
AE=DF
∠EAF=∠D
AF=DC
,
∴△AEF≌△DFC(SAS).
考点梳理
考点
分析
点评
专题
平行四边形的性质;全等三角形的判定.
由四边形ABCD是平行四边形,利用平行四边形的性质,即可得AB=CD,AB∥CD,又由平行线的性质,即可得∠D=∠EAF,然后由BE=AD,AF=AB,求得AF=CD,DF=AE,继而利用SAS证得:△AEF≌△DFC.
此题考查了平行四边形的性质与全等三角的判定.此题难度不大,注意数形结合思想的应用.
证明题;压轴题.
找相似题
(2013·无锡)已知点A(0,0),B(0,4),C(3,t+4),D(3,t).记N(t)为·ABCD内部(不含边界)整点的个数,其中整点是指横坐标和纵坐标都是整数的点,则N(t)所有可能的值为( )
(2013·无锡)如图,平行四边形ABCD中,AB:BC=3:2,∠DAB=60°,E在AB上,且AE:EB=1:2,F是BC的中点,过D分别作DP⊥AF于P,DQ⊥CE于Q,则DP:DQ等于( )
(2013·湖北)若平行四边形的一边长为2,面积为
4
6
,则此边上的高介于( )
(2013·杭州)在·ABCD中,下列结论一定正确的是( )
(2013·海南)如图,在·ABCD中,AC与BD相交于点O,则下列结论不一定成立的是( )