试题
题目:
(2012·徐州)如图,C为AB的中点.四边形ACDE为平行四边形,BE与CD相交于点F.
求证:EF=BF.
答案
证明:∵四边形ACDE为平行四边形,
∴ED=AC,ED∥AC.
∴∠D=∠FCB,∠DEF=∠B.
又∵C为AB的中点,
∴AC=BC.
∴ED=BC.
在△DEF和△CBF中,
∠D=∠FCB
ED=BC
∠DEF=∠B
,
∴△DEF≌△CBF.
∴EF=BF.
证明:∵四边形ACDE为平行四边形,
∴ED=AC,ED∥AC.
∴∠D=∠FCB,∠DEF=∠B.
又∵C为AB的中点,
∴AC=BC.
∴ED=BC.
在△DEF和△CBF中,
∠D=∠FCB
ED=BC
∠DEF=∠B
,
∴△DEF≌△CBF.
∴EF=BF.
考点梳理
考点
分析
点评
专题
平行四边形的性质;全等三角形的判定与性质.
将线段EF和BF分别放到△DEF和△CBF,通过证明这两个三角形全等,即可得出EF=BF.
本题考查平行四边形的性质及全等三角形的判定与性质,解题关键是根据平行四边形的性质得出△DEF和△CBF全等的条件,难度一般.
证明题.
找相似题
(2013·无锡)已知点A(0,0),B(0,4),C(3,t+4),D(3,t).记N(t)为·ABCD内部(不含边界)整点的个数,其中整点是指横坐标和纵坐标都是整数的点,则N(t)所有可能的值为( )
(2013·无锡)如图,平行四边形ABCD中,AB:BC=3:2,∠DAB=60°,E在AB上,且AE:EB=1:2,F是BC的中点,过D分别作DP⊥AF于P,DQ⊥CE于Q,则DP:DQ等于( )
(2013·湖北)若平行四边形的一边长为2,面积为
4
6
,则此边上的高介于( )
(2013·杭州)在·ABCD中,下列结论一定正确的是( )
(2013·海南)如图,在·ABCD中,AC与BD相交于点O,则下列结论不一定成立的是( )