试题
题目:
(2001·福州)如图,已知:平行四边形ABCD中,E是CD边的中点,连接BE并延长与AD的延长线相交于F点.求证:BC=DF.
答案
证明:∵四边形ABCD是平行四边形,
∴AD∥BC,
∴∠EBC=∠F,∠C=∠EDF,
又∵EC=ED,
∴△EBC≌△EFD(AAS),
∴BC=DF.
证明:∵四边形ABCD是平行四边形,
∴AD∥BC,
∴∠EBC=∠F,∠C=∠EDF,
又∵EC=ED,
∴△EBC≌△EFD(AAS),
∴BC=DF.
考点梳理
考点
分析
点评
专题
平行四边形的性质;全等三角形的判定与性质.
由四边形ABCD是平行四边形,可得AD∥BC,根据平行线的性质即可求得∠EBC=∠F,∠C=∠EDF,又由E是CD边的中点,根据AAS即可求得△EBC≌△EFD,则问题得证.
此题考查了平行四边形的性质以及全等三角形的判定与性质.此题难度不大,解题的关键是要注意数形结合思想的应用.
证明题;压轴题.
找相似题
(2013·无锡)已知点A(0,0),B(0,4),C(3,t+4),D(3,t).记N(t)为·ABCD内部(不含边界)整点的个数,其中整点是指横坐标和纵坐标都是整数的点,则N(t)所有可能的值为( )
(2013·无锡)如图,平行四边形ABCD中,AB:BC=3:2,∠DAB=60°,E在AB上,且AE:EB=1:2,F是BC的中点,过D分别作DP⊥AF于P,DQ⊥CE于Q,则DP:DQ等于( )
(2013·湖北)若平行四边形的一边长为2,面积为
4
6
,则此边上的高介于( )
(2013·杭州)在·ABCD中,下列结论一定正确的是( )
(2013·海南)如图,在·ABCD中,AC与BD相交于点O,则下列结论不一定成立的是( )