试题
题目:
(1998·金华)在平行四边形ABCD中,∠A﹦50°,则∠B=
130
130
度.
答案
130
解:∵·ABCD中,BC∥AD,
∴∠A+∠B=180°,
∴∠B=180°-∠A
=180°-50°=130°.
故答案为130.
考点梳理
考点
分析
点评
平行四边形的性质.
在平行四边形ABCD中,因为∠A和∠B是一组相邻的内角,由平行四边形的性质可知,∠A+∠B=180°,代值求解.
本题利用了平行四边形中邻角互补的性质.运用平行四边形的性质可解决以下问题,如求角的度数、线段的长度,证明角相等或互补,证明线段相等或倍分等.
找相似题
(2013·无锡)已知点A(0,0),B(0,4),C(3,t+4),D(3,t).记N(t)为·ABCD内部(不含边界)整点的个数,其中整点是指横坐标和纵坐标都是整数的点,则N(t)所有可能的值为( )
(2013·无锡)如图,平行四边形ABCD中,AB:BC=3:2,∠DAB=60°,E在AB上,且AE:EB=1:2,F是BC的中点,过D分别作DP⊥AF于P,DQ⊥CE于Q,则DP:DQ等于( )
(2013·湖北)若平行四边形的一边长为2,面积为
4
6
,则此边上的高介于( )
(2013·杭州)在·ABCD中,下列结论一定正确的是( )
(2013·海南)如图,在·ABCD中,AC与BD相交于点O,则下列结论不一定成立的是( )