试题
题目:
如图,在平行四边形ABCD中,∠BCD的平分线CE交AD于点E,∠ABC的平分线BF交AD于点F,求证:AE=DF.
答案
证明:∵四边形ABCD是平行四边形,
∴AD∥BC,AB=CD,
∴∠AFB=∠CBF,∠DEC=∠BCE,
∵BF平分∠ABC,CE平分∠BCD,
∴∠ABF=∠CBF,∠DCE=∠BCE,
∴∠ABF=∠AFB,∠DCE=∠DEC,
∴AB=AF,DE=CD,
∴AF=DE,
∴AE=DF.
证明:∵四边形ABCD是平行四边形,
∴AD∥BC,AB=CD,
∴∠AFB=∠CBF,∠DEC=∠BCE,
∵BF平分∠ABC,CE平分∠BCD,
∴∠ABF=∠CBF,∠DCE=∠BCE,
∴∠ABF=∠AFB,∠DCE=∠DEC,
∴AB=AF,DE=CD,
∴AF=DE,
∴AE=DF.
考点梳理
考点
分析
点评
专题
平行四边形的性质.
由在平行四边形ABCD中,∠BCD的平分线CE交AD于点E,∠ABC的平分线BF交AD于点F,根据平行线的性质与角平分线的定义,易得△ABF与△CDE是等腰三角形,继而证得结论.
此题考查了平行四边形的性质以及等腰三角形的判定与性质.此题难度不大,注意掌握数形结合思想的应用.
证明题.
找相似题
(2013·无锡)已知点A(0,0),B(0,4),C(3,t+4),D(3,t).记N(t)为·ABCD内部(不含边界)整点的个数,其中整点是指横坐标和纵坐标都是整数的点,则N(t)所有可能的值为( )
(2013·无锡)如图,平行四边形ABCD中,AB:BC=3:2,∠DAB=60°,E在AB上,且AE:EB=1:2,F是BC的中点,过D分别作DP⊥AF于P,DQ⊥CE于Q,则DP:DQ等于( )
(2013·湖北)若平行四边形的一边长为2,面积为
4
6
,则此边上的高介于( )
(2013·杭州)在·ABCD中,下列结论一定正确的是( )
(2013·海南)如图,在·ABCD中,AC与BD相交于点O,则下列结论不一定成立的是( )