试题
题目:
已知如图平行四边形ABCD,分别以AB,BC为边作等边△EAB与等边△FBC,连接EF,DF与DE,猜想△DEF的形状并加以证明.
答案
解:△DEF是等边三角形.
证明:∵四边形ABCD是平行四边形,
∴AD=BC,AB=CD,∠BAD=∠BCD.
∵△EAB与△FBC都是等边三角形,
∴AB=AE=BE,BF=CF=BC,∠BAE=∠BCF=60°.
∴AD=CF,∠EAD=∠DCF,AE=CD.
∴△ADE≌△CFD(SAS);
又∵CD=AB(平行四边形的对边相等),
∴BE=CD(等量代换),
∴△CFD≌△BFE(SSS),
∴△ADE≌△CFD≌△BFE,
可得DE=CF=EF.
∴△DEF是等边三角形.
解:△DEF是等边三角形.
证明:∵四边形ABCD是平行四边形,
∴AD=BC,AB=CD,∠BAD=∠BCD.
∵△EAB与△FBC都是等边三角形,
∴AB=AE=BE,BF=CF=BC,∠BAE=∠BCF=60°.
∴AD=CF,∠EAD=∠DCF,AE=CD.
∴△ADE≌△CFD(SAS);
又∵CD=AB(平行四边形的对边相等),
∴BE=CD(等量代换),
∴△CFD≌△BFE(SSS),
∴△ADE≌△CFD≌△BFE,
可得DE=CF=EF.
∴△DEF是等边三角形.
考点梳理
考点
分析
点评
专题
等边三角形的判定与性质;平行四边形的性质.
根据等边三角形的性质和平行四边形的性质可以发现△ADE≌△CFD≌△BFE,根据全等三角形的对应边相等就可证明DE=CF=EF.
此题综合运用了平行四边形的性质和等边三角形的性质.
探究型.
找相似题
(2013·无锡)已知点A(0,0),B(0,4),C(3,t+4),D(3,t).记N(t)为·ABCD内部(不含边界)整点的个数,其中整点是指横坐标和纵坐标都是整数的点,则N(t)所有可能的值为( )
(2013·无锡)如图,平行四边形ABCD中,AB:BC=3:2,∠DAB=60°,E在AB上,且AE:EB=1:2,F是BC的中点,过D分别作DP⊥AF于P,DQ⊥CE于Q,则DP:DQ等于( )
(2013·湖北)若平行四边形的一边长为2,面积为
4
6
,则此边上的高介于( )
(2013·杭州)在·ABCD中,下列结论一定正确的是( )
(2013·海南)如图,在·ABCD中,AC与BD相交于点O,则下列结论不一定成立的是( )