试题

题目:
青果学院如图,·ABCD中,对角线AC和BD交于O点,EF过O点交BA延长线于E,交DC延长线于F.求证:OE=OF.
答案
证明:∵四边形ABCD是平行四边形,
∴OB=OD,AB∥CD.
∴∠E=∠F又∠BOE=∠DOF.
∴△BOE≌△DOF(ASA).
∴OE=OF.
证明:∵四边形ABCD是平行四边形,
∴OB=OD,AB∥CD.
∴∠E=∠F又∠BOE=∠DOF.
∴△BOE≌△DOF(ASA).
∴OE=OF.
考点梳理
平行四边形的性质;全等三角形的判定与性质.
根据题意可知:证OE=OF,只要证△OBE≌△ODF即可.根据平行四边形性质容易证明.
此题主要考查了全等三角形的性质与判定、平行四边形的性质,首先利用平行四边形的性质构造全等条件,然后利用全等三角形的性质解决问题.
证明题.
找相似题