试题
题目:
甲,乙两地相距19km,某人从甲地出发去乙地,先步行7km,然后骑自行车,共行2h到达乙地.已知这个人骑自行车的速度是步行速度的4倍,求步行速度和骑自行车的速度.
答案
解:设步行速度为x千米/时,那么骑车速度是4x千米/时,
则
7
x
+
19-7
4x
=2
解得x=5
经检验x=5是原方程的解.
∴4x=20
答:步行速度为5km/h,骑自行车速度为20km/h.
解:设步行速度为x千米/时,那么骑车速度是4x千米/时,
则
7
x
+
19-7
4x
=2
解得x=5
经检验x=5是原方程的解.
∴4x=20
答:步行速度为5km/h,骑自行车速度为20km/h.
考点梳理
考点
分析
点评
专题
分式方程的应用.
未知的两个量中,步行的速度属于较小的量,应设步行的速度为未知数比较好.本题求速度,步行的路程和骑车的路程比较明显,那么应根据时间来列等量关系.本题的等量关系为:步行时间+骑车时间=2.
应用题中一般有三个量,求一个量,明显的有一个量,一定是根据另一量来列等量关系的.本题考查分式方程的应用,分析题意,找到合适的等量关系是解决问题的关键.本题应用的等量关系为:时间=路程÷速度,需注意分式应用题需验根.
行程问题.
找相似题
(2013·梧州)父子两人沿周长为a的圆周骑自行车匀速行驶.同向行驶时父亲不时超过儿子,而反向行驶时相遇的频率增大为11倍.已知儿子的速度为v,则父亲的速度为( )
(2013·日照)甲志愿者计划用若干个工作日完成社区的某项工作,从第三个工作日起,乙志愿者加盟此项工作,且甲、乙两人工效相同,结果提前3天完成任务,则甲志愿者计划完成此项工作的天数是( )
(2005·枣庄)学校计划将120名学生平均分成若干个读书小组,若每个小组比原计划多1人,则要比原计划少分出6个小组,那么原计划要分成的小组数是( )
(2004·云南)一组学生去春游,预计共需费用120元,后来又有2个参加进来,总费用不变,于是每人可少分摊3元,原来这组学生人数是( )
一件工作,甲独做需要5天完成,乙独做需要3天完成,两人合做一天可完成这件工作的( )