试题
题目:
如图,平面直角坐标系中,平行四边形ABCD的中心E的坐标为(2,0),若点A的坐标为(-2,1),则点C的坐标为( )
A.(4,-1)
B.(6,-1)
C.(8,-1)
D.(6,-2)
答案
B
解:连接AC,过点A作AG⊥x轴于点G,过点C作CH⊥x轴于点H,
∵E是平行四边形ABCD的中心,
∴AC过点E,
∴AE=CE,
在△AEG和△CEH中,
∠AEG=∠CEH
∠AGE=∠CHE=90°
AE=CE
,
∴△AEG≌△CEH(AAS),
∴EG=EH,CH=AG,
∵E的坐标为(2,0),点A的坐标为(-2,1),
∴EH=EG=4,CH=AG=1,
∴OH=OE+EH=6,
∴点C的坐标为:(6,-1).
故选B.
考点梳理
考点
分析
点评
平行四边形的性质;坐标与图形性质.
首先连接AC,过点A作AG⊥x轴于点G,过点C作CH⊥x轴于点H,可得E是平行四边形ABCD的中心,即可得AC过点E,易证得△AEG≌△CEH,继而求得答案.
此题考查了平行四边形的性质以及全等三角形的判定与性质.此题难度适中,注意掌握辅助线的作法,注意数形结合思想的应用.
找相似题
(2013·无锡)已知点A(0,0),B(0,4),C(3,t+4),D(3,t).记N(t)为·ABCD内部(不含边界)整点的个数,其中整点是指横坐标和纵坐标都是整数的点,则N(t)所有可能的值为( )
(2013·无锡)如图,平行四边形ABCD中,AB:BC=3:2,∠DAB=60°,E在AB上,且AE:EB=1:2,F是BC的中点,过D分别作DP⊥AF于P,DQ⊥CE于Q,则DP:DQ等于( )
(2013·湖北)若平行四边形的一边长为2,面积为
4
6
,则此边上的高介于( )
(2013·杭州)在·ABCD中,下列结论一定正确的是( )
(2013·海南)如图,在·ABCD中,AC与BD相交于点O,则下列结论不一定成立的是( )