试题
题目:
如图所示,·ABCD中,对角线AC,BD相交于O,OE⊥AD,OF⊥BC,垂足分别是E,F.求证:OE=OF.
答案
证明:∵四边形ABCD是平行四边形,
∴AD∥BC,OA=OC.
∴∠1=∠2.
又∵OE⊥AD,OF⊥BC,
∴∠AEO=∠CFO,
∴△AOE≌△COF,
∴OE=OF.
证明:∵四边形ABCD是平行四边形,
∴AD∥BC,OA=OC.
∴∠1=∠2.
又∵OE⊥AD,OF⊥BC,
∴∠AEO=∠CFO,
∴△AOE≌△COF,
∴OE=OF.
考点梳理
考点
分析
点评
专题
平行四边形的性质;全等三角形的判定与性质.
要证明OE=OF,就可证明这两条直线所在的三角形全等,那么相对应的两边就相等.
此题的关键是利用平行四边形的性质证明三角形全等,由全等证明两直线相等.
证明题.
找相似题
(2013·无锡)已知点A(0,0),B(0,4),C(3,t+4),D(3,t).记N(t)为·ABCD内部(不含边界)整点的个数,其中整点是指横坐标和纵坐标都是整数的点,则N(t)所有可能的值为( )
(2013·无锡)如图,平行四边形ABCD中,AB:BC=3:2,∠DAB=60°,E在AB上,且AE:EB=1:2,F是BC的中点,过D分别作DP⊥AF于P,DQ⊥CE于Q,则DP:DQ等于( )
(2013·湖北)若平行四边形的一边长为2,面积为
4
6
,则此边上的高介于( )
(2013·杭州)在·ABCD中,下列结论一定正确的是( )
(2013·海南)如图,在·ABCD中,AC与BD相交于点O,则下列结论不一定成立的是( )