试题
题目:
如图,在·ABCD中,延长CD至点E,延长AD至点F,连结EF,如果∠B=110°,那么∠E+∠F=( )
A.110°
B.70°
C.50°
D.30°
答案
B
解:∵四边形ABCD是平行四边形,
∴∠ADC=∠B=110°,
∴∠EDF=∠ADC=110°,
∴∠E+∠F=180°-∠EDF=70°.
故选B.
考点梳理
考点
分析
点评
平行四边形的性质.
在平行四边形ABCD中,∠B=110°,根据平行四边形的对角相等,即可求得∠ADC的度数,由对顶角相等与三角形内角和定理,即可求得答案.
此题考查了平行四边形的性质,用到的知识点为:三角形的内角和为180°、平行四边形的对角相等、对顶角相等.
找相似题
(2013·无锡)已知点A(0,0),B(0,4),C(3,t+4),D(3,t).记N(t)为·ABCD内部(不含边界)整点的个数,其中整点是指横坐标和纵坐标都是整数的点,则N(t)所有可能的值为( )
(2013·无锡)如图,平行四边形ABCD中,AB:BC=3:2,∠DAB=60°,E在AB上,且AE:EB=1:2,F是BC的中点,过D分别作DP⊥AF于P,DQ⊥CE于Q,则DP:DQ等于( )
(2013·湖北)若平行四边形的一边长为2,面积为
4
6
,则此边上的高介于( )
(2013·杭州)在·ABCD中,下列结论一定正确的是( )
(2013·海南)如图,在·ABCD中,AC与BD相交于点O,则下列结论不一定成立的是( )