试题
题目:
(2008·衡阳)如图,在平行四边形ABCD中,CE⊥AB,E为垂足,如果∠A=120°,那么∠BCE的度数是( )
A.80°
B.50°
C.40°
D.30°
答案
D
解:∵平行四边形ABCD,∠A=120°
∴∠B=180°-120°=60°
又∵CE⊥AB
∴∠BCE=90°-∠B=30°
故选D.
考点梳理
考点
分析
点评
专题
平行四边形的性质.
因为平行四边形对边平行,所以由两直线平行,同旁内角互补,可得∠A+∠B=180°,由已知易证∠BEC=90°,所以在Rt△BEC中,由三角形的内角和定理知∠BCE=30°.
本题直接通过平行四边形性质的应用,判断出正确的选项,属于基础题.
压轴题.
找相似题
(2013·无锡)已知点A(0,0),B(0,4),C(3,t+4),D(3,t).记N(t)为·ABCD内部(不含边界)整点的个数,其中整点是指横坐标和纵坐标都是整数的点,则N(t)所有可能的值为( )
(2013·无锡)如图,平行四边形ABCD中,AB:BC=3:2,∠DAB=60°,E在AB上,且AE:EB=1:2,F是BC的中点,过D分别作DP⊥AF于P,DQ⊥CE于Q,则DP:DQ等于( )
(2013·湖北)若平行四边形的一边长为2,面积为
4
6
,则此边上的高介于( )
(2013·杭州)在·ABCD中,下列结论一定正确的是( )
(2013·海南)如图,在·ABCD中,AC与BD相交于点O,则下列结论不一定成立的是( )