题目:

(2012·闵行区二模)已知:如图,在梯形ABCD中,AD∥BC,点E、F在边BC上,DE∥AB,AF∥CD,且四边形AEFD是平行四边形.
(1)试判断线段AD与BC的长度之间有怎样的数量关系?并证明你的结论;
(2)现有三个论断:①AD=AB;②∠B+∠C=90°;③∠B=2∠C.请从上述三个论断中选择一个论断作为条件,证明四边形AEFD是菱形.
答案
解:(1)线段AD与BC的长度之间的数量为:BC=3AD.
证明:∵AD∥BC,DE∥AB,
∴四边形ABED是平行四边形,
∴AD=BE,
同理可证:四边形AFCD是平行四边形,即得:AD=FC,
又∵四边形AEFD是平行四边形,
∴AD=EF,
∴AD=BE=EF=FC,
∴BC=3AD.
(2)解:选择论断②作为条件.
证明:∵DE∥AB,
∴∠B=∠DEC,
∵∠B+∠C=90°,
∴∠DEC+∠C=90°,
即得∠EDC=90°,
又∵EF=FC,
∴DF=EF,
∵四边形AEFD是平行四边形,
∴四边形AEFD是菱形.
解:(1)线段AD与BC的长度之间的数量为:BC=3AD.
证明:∵AD∥BC,DE∥AB,
∴四边形ABED是平行四边形,
∴AD=BE,
同理可证:四边形AFCD是平行四边形,即得:AD=FC,
又∵四边形AEFD是平行四边形,
∴AD=EF,
∴AD=BE=EF=FC,
∴BC=3AD.
(2)解:选择论断②作为条件.
证明:∵DE∥AB,
∴∠B=∠DEC,
∵∠B+∠C=90°,
∴∠DEC+∠C=90°,
即得∠EDC=90°,
又∵EF=FC,
∴DF=EF,
∵四边形AEFD是平行四边形,
∴四边形AEFD是菱形.