矩形的判定;全等三角形的判定与性质;平行四边形的判定;梯形.
(1)首先证明△DEF≌△CGF可得DE=CG,再加上条件CG∥DE,可以根据一组对边平行且相等的四边形是平行四边形判定四边形DECG是平行四边形.
(2)首先证明∠DEF=∠EDF,∠FEC=∠ECF,再证明∠EDC+∠DCE+∠DEC=180°,从而得到2∠DEC=180°进而得到∠DEC=90°,再有条件四边形DECG是平行四边形,
可得四边形DECG是矩形.
此题主要考查了全等三角形的判定与性质,以及平行四边形的判定,矩形的判定,关键是熟练掌握平行四边形和矩形的判定定理.
证明题.