试题
题目:
如图,已知在梯形ABCD中,AD∥BC,∠ABC=60°,BD平分∠ABC,且BD⊥DC,CD=4.
(1)求AD的长;
(2)求梯形ABCD的面积.
答案
解:(1)∵BD平分∠ABC,∠ABC=60°,
∴∠1=∠2=
1
2
∠ABC=30°.
又∵BD⊥DC,
∴∠C=60°.
∴∠ABC=∠C.
∴AB=CD=4.
∵AD∥BC,
∴∠1=∠3.
又∵∠1=∠2,
∴∠2=∠3.
∴AD=AB=4;
(2)过点D作DE⊥BC于点E,
在Rt△DBC中,∠1=30°,
∴BC=2CD=8.
在Rt△DEC中,∠C=60°,
∴∠4=30°.
∴EC=
1
2
CD=2.
∴DE=
C
D
2
-E
C
2
=2
3
,
∴S
梯形ABCD
=
1
2
(AD+BC)·DE=12
3
.
解:(1)∵BD平分∠ABC,∠ABC=60°,
∴∠1=∠2=
1
2
∠ABC=30°.
又∵BD⊥DC,
∴∠C=60°.
∴∠ABC=∠C.
∴AB=CD=4.
∵AD∥BC,
∴∠1=∠3.
又∵∠1=∠2,
∴∠2=∠3.
∴AD=AB=4;
(2)过点D作DE⊥BC于点E,
在Rt△DBC中,∠1=30°,
∴BC=2CD=8.
在Rt△DEC中,∠C=60°,
∴∠4=30°.
∴EC=
1
2
CD=2.
∴DE=
C
D
2
-E
C
2
=2
3
,
∴S
梯形ABCD
=
1
2
(AD+BC)·DE=12
3
.
考点梳理
考点
分析
点评
梯形;勾股定理.
(1)由在梯形ABCD中,AD∥BC,∠ABC=60°,BD平分∠ABC,易证得△ABD是等腰三角形,由BD⊥DC,∠ABC=60°,易证得梯形ABCD是等腰梯形,继而求得答案;
(2)首先过点D作DE⊥BC于点E,易求得BC的长,然后由勾股定理,可求得DE的长,继而求得答案.
此题考查了等腰梯形的判定与性质、等腰三角形的判定与性质以及勾股定理.此题难度适中,注意掌握辅助线的作法,注意数形结合思想的应用.
找相似题
(2013·广州)如图所示,四边形ABCD是梯形,AD∥BC,CA是∠BCD的平分线,且AB⊥AC,AB=4,AD=6,则tanB=( )
(2012·资阳)如图,△ABC是等腰三角形,点D是底边BC上异于BC中点的一个点,∠ADE=∠DAC,DE=AC.运用这个图(不添加辅助线)可以说明下列哪一个命题是假命题?( )
(2012·无锡)如图,梯形ABCD中,AD∥BC,AD=3,AB=5,BC=9,CD的垂直平分线交BC于E,连接DE,则四边
形ABED的周长等于( )
(2012·十堰)如图,梯形ABCD中,AD∥BC,点M是AD的中点,且MB=MC,若AD=4,AB=6,BC=8,则梯形ABCD的周长为( )
(2011·台州)在梯形ABCD中,AD∥BC,∠ABC=90°,对角线AC、BD相交于点O.下列条件中,不能判断对角线互相垂直的是( )